تأثیر تغییرات آب و هوایی و متغیرهای فیزیکی و شیمیایی آب بر اجتماعات فیتوپلانکتونی دریاچه سد ارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آبیاری و آبادانی/دانشکده مهندسی فناوری و کشاورزی/دانشگاه تهران

2 استادیار/گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 گروه علوم و زیست فناوری گیاهی، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران

4 دانشیار-گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

5 مرکز تحقیقات آرتمیای کشور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

اقلیم از عناصر مهم تأثیرگذار در عرصه محیط زیست است و مدیریت بهینه زیست‌بوم‌های آبی و خشکی بدون توجه به شرایط اقلیمی امکان­پذیر نیست. در دهه­های اخیر شکوفایی جلبکی اکوسیستم­های آبی رشد قابل‌توجهی داشته است. به نظر می­رسد این افزایش ناشی از تغییرات الگوهای آب و هوایی و تأثیر آن بر توزیع و فراوانی گونه‌های فیتوپلانکتونی است. از مهمترین اهداف پژوهش حاضر به‌عنوان پژوهشی گذشته‌نگر می‌توان به این موارد اشاره نمود: الف) تعیین جوامع غالب فیتوپلانکتونی و ارزیابی تغییرات الگوی پراکنش آنها در دریاچه سد ارس در سال­های 1387 و 1392؛ و ب) بررسی تأثیرعوامل هواشناسی و فاکتورهای فیزیکی و شیمیایی آب بر رشد جمعیت فیتوپلانکتون­ها در دریاچه سد ارس. در این مطالعه، نمونه‌برداری به صورت فصلی و از سه ایستگاه ورودی سد، وسط دریاچه و خروجی سد انجام شد. در هر ایستگاه نمونه­هایی برای شناسایی و شمارش فیتوپلانکتون­ها و آنالیز فاکتورهای شیمیایی آب جمع­آوری شدند. داده­های ماهواره­ای از سنجنده MODIS دریافت شد و بر مبنای آن مقادیر کلروفیل a  به دست آمد. بالاترین میزان کلروفیل a در تابستان سال­های 1387 و 1392 به‌ترتیب با مقادیر 71/12 و 10 (میلی­گرم بر مترمکعب) ثبت گردید. نتایج نشان داد که فراوانی فیتوپلانکتون­ها همبستگی بالایی با غلظت کلروفیل زیست‌بوم آبی دارد. نتایج آنالیز مؤلفه‌های اصلی و رگرسیون چندگانه نشان داد، دمای هوا بیشترین سهم را در تغییرات غلظت کلروفیل دارد. به‌طوریکه ضریب همبستگی بین میزان کلروفیل و دمای هوا 72/0 محاسبه گردید. همچنین نتایج نشان­دهنده تغییر الگوی جوامع فیتوپلانکتونی در منطقه بسوی غلبه نسبی سیانوباکتری­ها در تمام فصول سال 1392 نسبت به سال 1387 است. به نظر می‌رسد تغییرات الگوی دما و بارش منطقه را می‌توان از عوامل اصلی تأثیرگذار در ارتباط با این تغییر به‌شمار آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Impact of Climatic Variations and Physical and Chemical Variables of Water on Phytoplankton Communities of Aras Dam Lake

نویسندگان [English]

  • hadis golmohammadian 1
  • Zahra Aghashariatmadari 2
  • Zeinab Shariatmadari 3
  • Javad Bazrafshan 4
  • Fereidon Mohebbi 5
1 Irrigation & Reclamation Engrg. Dept. University of Tehran Karaj, Iran.
2 Assistant Prof., Irrigation & Reclamation Engrg. Dept. University of Tehran Karaj, Iran.
3 Department of Plant Science and Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid Beheshti, Tehran, Iran
4 Associate professor-Irrigation & Reclamation Engrg. Dept. University of Tehran Karaj, Iran.
5 National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Urmia, Iran
چکیده [English]

Climate is an important influential element in the field of environment; So that the optimal management of aquatic and terrestrial ecosystems is not possible without serious attention to climatic conditions. In recent decades, water bloom of aquatic ecosystems has grown significantly. This risen growth is due to natural changes in climate patterns and distribution mechanisms of species, affected by environmental factors. The Goals of this study, as a retrospective research, are; a) evaluation of changes in the dominant pattern of phytoplankton communities in Aras Dam Lake in 2008 and 2013, b) investigation of the impact of meteorological, physical and chemical factors on phytoplankton population growth in the study area. Data sampling was carried out seasonally in three positions, namely Dam entrance, middle of lake and Dam output. At each gaging position, data were collected to identify and count phytoplankton and to analyze several water chemical factors. Satellite data were received from the MODIS sensor and chlorophyll a images were obtained. The highest levels of chlorophyll a in summer of 2008 and 2013 were 12.71 and 10 (mg/m3), respectively. Results showed that the abundance of phytoplankton had a high correlation with the concentration of chlorophyll. In summer, the high temperatures and pH affect bloom of Cyanobacterial communities. Usually, Cyanobacterial blooms were related to high values of temperature, pH and high concentration of the dissolved oxygen in summer. The results of principal component analysis and multiple regression showed that the air temperature is the most important factor in chlorophyll changes. The correlation coefficient between chlorophyll and air temperature was calculated to be 0.72. Change in the dominant pattern of phytoplankton communities towards Cyanobacterial pattern was observed in Aras Dam Lake, showing domination of Cyanophyta branch in all seasons of 2008 compared to 2013. This result may be caused by changes in the temperature and precipitation patterns over the study area.

کلیدواژه‌ها [English]

  • climate change
  • phytoplankton
  • Harmful Algal Bloom
  • Cyanobacteria
Abrantes, N. Antunes, S. C. Pereira, M. J. and Gonçalves, F. (2008) Seasonal succession of cladocerans and phytoplankton and their interaction in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecologica. 29, 54–64.
Arman, M. Riyahi, H. and Sonboli, A. (2015) Identification of blue-green algae and assessment of their ecological relationship in Chah-Ahmad hot spring of Hormozgan Province. Journal of Aquatic Ecology. 4(4): 79-71. (In Farsi)
Bartram, J. and Chorus, I. (1999) Toxic Cyanobacteria in Water: aGuide to Their Public Health Consequence s, Monitoring and Management. WHO, London.
Bellinger, E.D. (1992) A key to common algae. The Institution of water and Environmental Management, London. 138pp.
Bera, A. Bhattacharya, M.CH. Patra, B. and Sar, U. K. (2014) Phytoplankton density in relation to physico- chemical parameters of Kangsabati Reservoir, West Bengal, India. International Journal of Current Research 6, 6989-6996.
Bigham savestani. S, Zareidarki. B, Patimar. R, and Jorjani. E. (2016) Report of blue-green algae from the south coast of the Caspian Sea (Noor city). Journal of Aquatic Ecology.2016 (2) 6, 116-123. (In Farsi)
Chirico, N. António, Diana C. Pozzoli, L. Marinov, D. Malagó, A. Sanseverino, I. Beghi, A, Genoni, P. Dobricic, S. and Lettieri, T. (2020) Cyanobacterial Blooms in Lake Varese: Analysis and Characterization over Ten Years of Observations. Water 2020, 12, 675; doi:10.3390/w12030675.
Cupertino, A. Gücker, B. Von Rückert, G. and Figueredo, C.C. (2019) Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring: taxonomic versus functional groups. Ecol. Ind. 101, 522–532.
Elliott, A.J. (2012) Is the future bluegreen? A review of the currentmodel predictions of how climate change could affect pelagicfreshwater cyanobacteria. Water Res. 46 (5), 1364 e1371 .
Guoa, Ch. Zhua,  G. Qina, B. Zhanga, Y. Zhua, M. Xua, H. Chena, Y. and Paerlb, Hans W. (2019) Climate exerts a greater modulating effect on the phytoplankton community after 2007 in eutrophic Lake Taihu, China: Evidence from 25 years of recordings. Ecological Indicators 105 (2019) 82–91.
Hamzehei, S. (2012) Field Study and Numerical Simulation of Developing Red Tide in the Northern Strait of Hormuz. Ph.D Thesis Physical Oceanography.
Howard, A. (1994) Problem cyanobacteria blooms: explanationand simulation modeling. Trans. Inst. Br. Geogr. 19 (2),213e 224 .
Hu, W. Connell, D. Mengersen, K. and Tong, S. (2009) Weathervariability, sunspots, and the blooms of cyanobacteria.EcoHealth 6 (1), 71 e 78.
Jin, Ye. Yu, Ruihong. Zhang, Zhuangzhuang. Zhang, Qi. Li, Meixia. Cao, Zhengxu. Wu, and Linhui Hao, Yanling. (2020) Spatiotemporal variability of phytoplankton functional groups in a shallow eutrophic lake from cold, arid regions. Environ Monit Assess (2020) 192: 371.
Ke, Z. X. Xie, P. and Guo, L. G. (2006). Controlling factors of spring–summer phytoplankton succession in Lake Taihu (Meiliang Bay, China). Hydrobiologia. 607, 41–49.
Ko, C.Y. Lai, C.C. Hsu, H.H. and Shiah, F.K. (2017). Decadal phytoplankton dynamics in response to episodic climatic disturbances in a subtropical deep freshwater ecosystem. Water Res. 109, 102–113.
Le Vu, B. Vinc, on-Leite B. Lemaire, B.J. Bensoussan, N. Calzas, M. Drezen, C. Deroubaix , J.F. Escoffier, N. Degres, Y. Freissinet, C. Groleau, A. Humbert, J.F. Paolini , G. Prevot, F. Quiblier, C. Rioust, E. and Tassin, B. (2010). High-frequencymonitoring of phytoplankton dynamic s within the Europeanwater framework directive: application to metalimneticcyanobacteria. Biogeochemistry 106 (2), 229e 242.
Mateo, P. Leganés, F. Perona, E. Loza, V. and Fernández-Piñas, F. (2015) Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodivers. Conserv. 24, 909–948.
Mohebbi, F. Riahi, H. Sheidaei, M. and Shariatmadari, Z. (2016) Phytoplankton of Aras dam reservoir (Iran):      an attempt to assess water quality. Iranian Journal of Fisheries Sciences. 15(4) 1318-1336. (In Farsi)
Mohebbi, F. Riahi, H. Sheidaei, M. Shariatmadari, and Z. Manaffar, R. (2015) Environmental control of the dominant phytoplankton in Aras Reservoir (Iran): A multivariate approach. Lakes and Reservoirs: Research and Management 2015 20 : 206–215. (In Farsi)
Mohsenizadeh, F. Negarestan, H. and Savari, A. (2014) Factors affecting phytoplankton fluctuations in the Persian Gulf) Bushehr coastal waters) during winter and spring 2012 – 2013. isfj. 2014; 23 (2): 91-101. (In Farsi)
Monchamp, M.E. Spaak, P. Domaizon, I. Dubois, N. Bouffard, D. and Pomati, F. (2018) Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324.
Panahi Mirzahasanlou, J. Ramazanpour, Z. and Imanpour, J. (2019) Seasonal sequence of phytoplankton of Yamchi dam lake in Ardabil province and its relationship with physicochemical parameters of water. Journal of Aquatic Ecology. 2019 (2) 9, 22-31. (In Farsi)
Prescott, G.W. (1962). Algae of western great lakes area. W.M.C. Brown Company Publishing, Iowa, USA. 933pp.
Reichwaldt, S.E. and Ghadouani, A. (2012) Effects of rainfall patternson toxic cyanobacterial blooms in a changing climate:between simplistic scenarios and complex dynamics. WaterRes. 46 (5), 1372e 1393.
Reynolds, C.S. (2006) The Ecology of Phytoplankton. New York: Cambridge University Press.
Shannon, C.E. and Weaver, W. (1963) The Mathematical theory of communication. University of Illinois press, Urbana, Illinois, USA. 125 pp.
Tiffany, L.H. and Britton, M.E. (1971). The algae of Illinois. Hanfer Publishing Company, New York. USA. 407pp.
Trojanowska, A.A. and Izydorczyk, K. (2010) Phosphorus fractionstransformation in sediments before and after cyanobacterialbloom: implications for reduct ion of eutrophicationsymptoms in dam reservoir. Water Air Soil Pollut. 211 (1 e 4),287e 298.
Wagner, C. and Adrian, R. (2009) Cyanobacteria dominance:quantifying the effect s of climate change. Limno l. Oceanogr.54 (2), 2460 e 2468 .
Wang, J.J. Pan, F.Y. Soininen, J. Heino, J. and Shen, J. (2016) Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 7, 9.
Wongsai, S. and Luo, K. (2007) Understanding environment al factorsassociated with cyanobact rial bloom. In: Paper Presented atthe 3rd IASTED International Conference on EnvironmentalModel ling and Simulation, EMS 2007, Honolulu , HI, UnitedStates .
Yousefi. E. Rahimi bashar. M.R. Torabi. H. Taghipour. SH. Farokhroz. M. and Taghavi. H. (2016) Temporal and special variations of physicochemical factors and special richness of phytoplanktons in Manjil reservoir. Journal of Plant Research (Iranian Journal of Biology). Volume 30 (2017), Issue 3. (In Farsi)
Zare , M. A. (2010) Multivariate analysis methods in spss software. University of Tehran.
Zamyadi, A. MacLeod, L.S. Fan, Y. McQuaid, N. Dorner, S. Sauve, S. and Prevost, M. (2012) Toxic cyanobacterialbreakt hrough and accumulation in a drinking water plant: amonitoring and treatment challenge. Water Res. 46 (5), 1511 e 1523 .
Zhang, M. Duan, H. Shi, X. Yu, Y. and Kong, F. (2012) Contributionsof meteor logy to the phenology of cyanobacterial blooms:implications for future climate change. Water Res. 46 (5), 442 e 452.