بررسی کارایی مدل‌های ریزمقیاس‌نمایی آماری LARS-WG و SDSM در شبیه‌سازی دما و بارش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران، دانشکده منابع طبیعی

2 دانشکده منابع طبیعی دانشگاه تهران

3 دانشگاه تهران. دانشکده منابع طبیعی

4 دانشگاه تهران دانشکده ابیاری

5 موسسه تحقیقات ابخیزداری و حفاظت خاک

چکیده

در این تحقیق، نتایج دو روش ریزمقیاس نمایی SDSM و LARS-WG با در نظر گرفتن معیارهای خطا، ازلحاظ بارش روزانه، دماهای حداقل و حداکثر روزانه در دو ایستگاه سینوپتیک روانسر و کرمانشاه مقایسه می‌شود. در هر دو مدل دوره زمانی 1988-1961 و 1989-2001 به ترتیب برای انجام واسنجی و صحت سنجی در نظر گرفته شدند. نتایج کلی نشان داد که مدل SDSM در دو ایستگاه موردبررسی، در هر دو مرحله واسنجی و صحت سنجی، برای دماهای حداقل و حداکثر روزانه عملکرد بهتری نسبت به الگوی LARS-WG دارد درحالی­که برای بارش روزانه، مدل LARS-WG دارای عملکرد بهتری می­باشد. از نتایج ریزمقیاس نمایی، چنین نتیجه‌گیری می­شود که در دو دهه 2020 و 2050 تحت سناریو A2 و با به‌کارگیری مدل بزرگ‌مقیاس HadCM3، ایستگاه کرمانشاه و روانسر با میزان بارش کمتری مواجه می‍شوند. هم‌چنین پیش‌بینی‌ها نشان می‌دهد که در هر دو مدل دمای حداقل و دمای حداکثر در دو دهه آتی تحت سناریو A2 در هر دو ایستگاه افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance assessment of LARS-WG and SDSM downscaling models in simulation of precipitation and temperature

نویسندگان [English]

  • Ali Salajegheh 1
  • Elham Rafiei Sardoii 2
  • Alireza Moghaddamnia 3
  • Arash Malekian 3
  • Shahab Araghinejad 4
  • Shahram Khalighi Sigarodi 3
  • Amin Saleh Pourjam 5
1 Tehran University, natural resources faculty.
2
3 Tehran University. natural resources faculty
4 Tehran University. Irrigation faculty
5 Assistant Professor of Soil Conservation and Watershed Management Research Institute
چکیده [English]

Throughout the present study, the results of two downscaling models (SDSM vs. LARS-WG) are compared, considering the error criteria in terms of daily rainfall, daily minimum and maximum temperatures within two research stations of Ravansar and Kermanshah. In either of the models, 1988-1961 and 1989-2001 periods were respectively considered for calibration and validation. The results indicated that in either of the calibration and validation periods, SDSM model benefits from a more appropriate performance than LARS-WG in the simulation of daily minimum vs. maximum temperatures at the two stations, whereas LARS-WG model presents a more acceptable performance than that in the simulation of daily rainfall. The results of downscaling indicate that Kermanshah and Ravansar stations will be faced with less precipitation under A2 scenario and HadCM3 model in 2020s and 2050s. Also, it is concluded that in both models, minimum and maximum temperatures increase in the next two decades under the A2 scenario in either one of the stations.

کلیدواژه‌ها [English]

  • climate change
  • Precipitation
  • Minimum Temperature
  • maximum temperature
Aghashahi, M. (2012) Comparison between LARS-WG and SDSM in order to downscaling environmental parameters in climate change studies. The sixth National Conference of Environmental Engineering. Tehran University. Environment Faculty.
Alireza Zamani Nuri, Mohammadreza Farzaneh, Kiamars Espanayi. 2014. Assessment of climatic parameters uncertainty under effect of different downscaling techniques. International Research Journal of Applied and Basic Sciences. 8(9), 838-225.
Alizadeh, H and Zahraei, B. (2014). Comparison of statistical downscaling models in simulation of the daily rainfall, The Sixteenth Conference of Iran Geophysics, Pages 128-132.
Andersen, H. E., Kronvang, B., Larsen, S. E., Hoffmann, C. C., Jensen, T. S and Rasmussen, E. K. (2006). Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment, 365(1), 223-237.
Chen, H., Xu, C. Y and Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of hydrology, 434, 36-45.
Farzaneh M, Samadi, S. Z., Akbarpour, A and Eslamian S. S. (2010). Introduction of selected predictors for statistical downscaling in Behesht-Abad subbasin of northern Karoon. The first conference of practical researches of water resources of Iran, Kermanshah, Industrial Kermanshah University.
Goudarzi, M., Salahi, B and Hosseini, S. A. (2015). Performance Assessment of LARS-WG and SDSM Downscaling Models In Simulation of Climate Changes in Urmia Lake Basin. Iran-Watershed Management Science & Engineering. 9(31).
Harpham, C and Wilby, R. L. (2005). Multi-site downscaling of heavy daily precipitation occurrence and amounts. Journal of Hydrology, 312(1), 235-255.
Hashmi, M. Z., Shamseldin, A. Y and Melville, B. W. (2011). Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment, 25(4), 475-484.
IPCC, (2014), Summary for policymakers. In: Climate Change. 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.
Kabiri, R., Ramani Bai, V and Chan, A. (2015). Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed, Malaysia, Environmental Earth Science Journal, 73, 27-37.
Tatsumi, K., Oizumi, T and Yamashiki, Y. (2013). Introduction of daily minimum and maximum temperature change signals in the Shikoku region using the statistical downscaling method by GCMs. Hydrological Research Letters, 7(3), 48-53.
Zulkarnain H., Shamsudin, S and Sobri, H. (2014). Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature, Theor. Appl. Climatol., 116, 243–257.