مقایسه و ارزیابی روش‏های مختلف برآورد معکوس ضرایب معادله نفوذ در شرایط کشت داخل جویچه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، پردیس ابوریحان دانشگاه تهران

2 هیات علمی دانشگاه تهران

چکیده

ضرایب معادلات نفوذ نقش اساسی در ارزیابی و طراحی سامانه­های آبیاری دارند؛ به همین دلیل برای افزایش بازده آبیاری ضروری است که این ضرایب با دقت بالا تخمین زده شوند. در این تحقیق، چهار روش تخمین معکوس ضرایب معادله نفوذ شامل دو نقطه­ای، بهینه­سازی چند سطحی، SIPAR-ID و IPARM با استفاده از داده­های مزرعه­ای در شرایط کشت داخل جویچه مورد ارزیابی و مقایسه قرار گرفتند. مطالعه مزرعه­ای به منظور جمع­آوری داده‌های مورد نیاز در سال 1393 در کرج انجام گردید. گیاه مورد استفاده در این تحقیق ذرت بود که با دو دبی 29/0 و 44/0 لیتر در ثانیه، در هفت نوبت آبیاری شد. براساس ضرایب تخمینی معادله نفوذ، مدل IPARM با متوسط خطای نسبی 24/1 و 52/1 درصد و روش بهینه­سازی چند سطحی با متوسط خطای نسبی 44/1 و 58/1 درصد در تخمین حجم آب نفوذ یافته در خاک بهترین عملکرد را به ترتیب در دبی‌های 29/0 و 44/0 لیتر در ثانیه داشتند. مدل SIPAR-ID در تخمین ضرایب معادله نفوذ در جویچه­های کشت شده عملکرد ضعیف و با نوسانات زیاد داشت. علاوه بر این، روش دو نقطه­ای نیز با متوسط خطای نسبی کمتر از 10 درصد عملکرد قابل­قبولی در تخمین حجم نفوذ یافته در این بررسی ارائه داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison and evaluation of different methods for inverse estimation of the infiltration equation parameters in vegetated furrows

نویسندگان [English]

  • Payam Kamali 1
  • Hamed Ebrahimian 2
چکیده [English]

The parameters of infiltration equations have a key role to evaluate and design irrigation systems. Therefore, in order to enhance irrigation efficiency, it is necessary that these parameters to be estimated precisely. In this study, four inverse estimation methods to predict the coefficients of infiltration equation including two-point method, multilevel optimization, SIPAR-ID, and IPARM in the vegetated furrows were assessed and compared together using the field data. The field study in order to collect required data was conducted in Karaj in 2014. Seven irrigation events were performed during the growing season of the maize with two inflow discharges of 0.29 and 0.44 l/s. Based on the estimated coefficients of infiltration equation, the IPARM model with average relative errors of 1.24 and 1.52 %; as well as the multilevel optimization method with average relative errors of 1.44 and 1.58 % had the best performance for inflow discharges of 0.29 and 0.44 l/s in estimating infiltrated water volume, respectively. The SIPAR-ID model had a poor and fluctuating performance in estimating the coefficients of infiltration equation in the vegetated furrows. Moreover, the two-point method presented an acceptable performance with average relative error less than 10 percent in estimating infiltrated water volume.

کلیدواژه‌ها [English]

  • Surface irrigation
  • Parameters of infiltration equation
  • Runoff
  • Advance
Abbasi, F. (2012). Principle Flow in Surface Irrigation. Iranian National Committee on Irrigation and Drainage      (IRNCID), p. 232, Tehran, Iran.
Bautista E., Clemmens, A. J., Strelkoff, T. S. and Schlegel, J. (2009). Modern analysis of surface irrigation systems with WinSRFR, Agricultural Water Management. 96(1), 1146-1154.
Beykzadeh, E., Ziaei, A. N., Davari, K., and Ansari, H. (2014). Finding the Optimum Infiltration and Roughness     Parameters Irrigation Using Complete Hydrodynamic Model. Iranian Journal of Irrigation and Drainage, 8 (3), 549-555. (In Farsi)
Ebrahimian, H. (2014). Soil Infiltration Characteristics in Alternate and Conventional Furrow Irrigation using Different Estimation Method, KSCE Journal of Civil Engineering, 18(6), 1904-1911.
Elliott, R. L. and W. R. Walker (1982). Field evaluation of furrow infiltration and advance functions, Transactions of the American Society of Agricultural Engineers, 25(2), 396- 400.
Fok, Y.S., A.A. Bishop, (1965). Analysis of water advance in surface irrigation, Journal of Irrigation and Drainage Engineering, 91 (1), 99-116.
Gillies, M. H. and Smith, R. J. (2005). Infiltration parameters from surface irrigation advance and run-off data. Irrigation Science, 24(1), 25-35.
Hanson, B. R., Prichard, T. L. and Schulbach, H. (1993). Estimating furrow infiltration. Agricultural Water Management, 24(4), 281–298.
Holzapfel, E.A., J. Jana, C. Zuniga, M.A. Marino, J. Paredes, and M. Billib, 2004. Infiltration parameters for furrow irrigation, Agricultural Water Management, 68(1), 19–32.
Keifer, F. W., 1965. Average depth of absorbed water in surface irrigation. Special Publication, Dept. of Civil Engineering, Utah State Univ. Logan, Utah.
Majdzadeh, B., Ojaghloo, H., Ghaobadi-Nia, M., Sohrabi, T. and Abbasi, F. (2009). Estimating infiltration parameter for simulation of advance flow in furrow irrigation, International Conference on Water Resources (ICWR 2009).
Moravejalahkami, B., Mostafazadeh-Fard, B., Heidarpour, M. and Abbasi, F. (2009). Furrow infiltration and roughness prediction for different furrow inflow hydrographs using a zero-inertia model with a multilevel calibration approach. Biosystems Engineering, 103(3), 371–381.
Ramezani Etedali, H., Ebrahimian, H., Abbasi, F. and Liaghat, A. (2011). Evaluation of EVALUE, SIPAR_ID               
           and INFILT Models for Estimating of Kostiakov infiltration parameters in Furrow Irrigation, Journal of Irrigation Science and Engineering, 35(1), 1-10. (In Farsi)
Rodriguez, J. A. and Martos, J. C. (2010). SIPAR_ID: Freeware for surface irrigation parameter identification. Journal of Environmental Modelling& Software, 25(1), 1478-1488.
Sedaghatdoost, A. and Ebrahimian, H. (2014). The application of inverse modeling to estimate infiltration and                 
          roughness coefficients in alternate and conventional furrow irrigation. Iranian Journal of Soil and Water                        
           Research, 45(2), 147-154. (In Farsi)
Sepaskhah, A. R. and Bonder, H. (2002). Estimation of manning roughness coefficient for bare and vegetated furrow irrigation, Journal of Biosystems Engineering, 82 (3), 351–357.
Shabani, A., Sepaskhah, A. R. and Kamgar-Haghighi, A. (2012). Responses of agronomic components of rapeseed (Brassica napus L.) as influenced by deficit irrigation, water salinity and planting method, International Journal of Plant Production, 7 (2), 313-340.
Walker, W. R., (2005). Multilevel calibration of furrow infiltration and roughness. Irrigation and Drainage Engineering 131(2), 129–136.
Walker, W. R. and Skogerboe, G. (1987). Surface Irrigation: Theory and Practice. Prentice Hall, Englewood Cliffs, N.J.