Abbasi, F. (2012). Principle Flow in Surface Irrigation. Iranian National Committee on Irrigation and Drainage (IRNCID), p. 232, Tehran, Iran.
Bautista E., Clemmens, A. J., Strelkoff, T. S. and Schlegel, J. (2009). Modern analysis of surface irrigation systems with WinSRFR, Agricultural Water Management. 96(1), 1146-1154.
Beykzadeh, E., Ziaei, A. N., Davari, K., and Ansari, H. (2014). Finding the Optimum Infiltration and Roughness Parameters Irrigation Using Complete Hydrodynamic Model. Iranian Journal of Irrigation and Drainage, 8 (3), 549-555. (In Farsi)
Ebrahimian, H. (2014). Soil Infiltration Characteristics in Alternate and Conventional Furrow Irrigation using Different Estimation Method, KSCE Journal of Civil Engineering, 18(6), 1904-1911.
Elliott, R. L. and W. R. Walker (1982). Field evaluation of furrow infiltration and advance functions, Transactions of the American Society of Agricultural Engineers, 25(2), 396- 400.
Fok, Y.S., A.A. Bishop, (1965). Analysis of water advance in surface irrigation, Journal of Irrigation and Drainage Engineering, 91 (1), 99-116.
Gillies, M. H. and Smith, R. J. (2005). Infiltration parameters from surface irrigation advance and run-off data. Irrigation Science, 24(1), 25-35.
Hanson, B. R., Prichard, T. L. and Schulbach, H. (1993). Estimating furrow infiltration. Agricultural Water Management, 24(4), 281–298.
Holzapfel, E.A., J. Jana, C. Zuniga, M.A. Marino, J. Paredes, and M. Billib, 2004. Infiltration parameters for furrow irrigation, Agricultural Water Management, 68(1), 19–32.
Keifer, F. W., 1965. Average depth of absorbed water in surface irrigation. Special Publication, Dept. of Civil Engineering, Utah State Univ. Logan, Utah.
Majdzadeh, B., Ojaghloo, H., Ghaobadi-Nia, M., Sohrabi, T. and Abbasi, F. (2009). Estimating infiltration parameter for simulation of advance flow in furrow irrigation, International Conference on Water Resources (ICWR 2009).
Moravejalahkami, B., Mostafazadeh-Fard, B., Heidarpour, M. and Abbasi, F. (2009). Furrow infiltration and roughness prediction for different furrow inflow hydrographs using a zero-inertia model with a multilevel calibration approach.
Biosystems Engineering, 103(3), 371–381.
Ramezani Etedali, H., Ebrahimian, H., Abbasi, F. and Liaghat, A. (2011). Evaluation of EVALUE, SIPAR_ID
and INFILT Models for Estimating of Kostiakov infiltration parameters in Furrow Irrigation, Journal of Irrigation Science and Engineering, 35(1), 1-10. (In Farsi)
Rodriguez, J. A. and Martos, J. C. (2010). SIPAR_ID: Freeware for surface irrigation parameter identification. Journal of Environmental Modelling& Software, 25(1), 1478-1488.
Sedaghatdoost, A. and Ebrahimian, H. (2014). The application of inverse modeling to estimate infiltration and
roughness coefficients in alternate and conventional furrow irrigation. Iranian Journal of Soil and Water
Research, 45(2), 147-154. (In Farsi)
Sepaskhah, A. R. and Bonder, H. (2002). Estimation of manning roughness coefficient for bare and vegetated furrow irrigation, Journal of Biosystems Engineering, 82 (3), 351–357.
Shabani, A., Sepaskhah, A. R. and Kamgar-Haghighi, A. (2012). Responses of agronomic components of rapeseed (Brassica napus L.) as influenced by deficit irrigation, water salinity and planting method, International Journal of Plant Production, 7 (2), 313-340.
Walker, W. R., (2005). Multilevel calibration of furrow infiltration and roughness. Irrigation and Drainage Engineering 131(2), 129–136.
Walker, W. R. and Skogerboe, G. (1987). Surface Irrigation: Theory and Practice. Prentice Hall, Englewood Cliffs, N.J.