تحلیل همبست خشکسالی_گرد و غبار و بررسی ارتباط آن با تغییرات پوشش گیاهی در استان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

چکیده

خشکسالی به عنوان یکی از پیچیده‌ترین پدیده‌های طبیعی هر ساله خسارت‌های زیادی به صورت مستقیم و غیرمستقیم به بخش‌های مختلف وارد می‌کند. هدف از مطالعه حاضر، پایش یکپارچۀ خشک‌سالی، گرد و غبار و پوشش گیاهی در پنج ایستگاه استان خوزستان با طول دورۀ آماری 30 ساله (2019-1990) می‌باشد. در این مطالعه از داده‌های ساعتی قدرت دید افقی، کدهای سازمان هواشناسی و همچنین داده‌های ایستگاه سینوپتیک در بازه زمانی روزانه برای به دست آوردن شاخص‌های خشک‌سالی (SPEI,SPI) و متغیر فراوانی طوفان‌های گرد و غبار (DU) در پنجره‌های زمانی 1، 3، 6 و 12 ماهه استفاده گردید. بعد از محاسبۀ شاخص‌های خشک-سالی، گرد و غبار و پوشش گیاهی، به ترکیب این شاخص‌ها با روش‌ تابع کاپولای تجربی پرداخته شد. ایستگاهی که بهترین همبستگی را بین سه شاخص اقلیمی گرد و غبار - خشک‌سالی - پوشش گیاهی به همراه داشت، به عنوان ایستگاه معرف در نظر گرفته شد و کوپل سه متغیره بین شاخص‌های مورد نظر در آن ایستگاه بررسی گردید. نتایج نشان داد که طبق شاخص SPI از سال 1999 تا 2003 و 2008 تا 2012 خشک‌سالی‌های شدیدی در سطح استان رخ داده است که تأثیرات منفی زیادی را بر خاک منطقه و همچنین شکل‌گیری کانون‌های مولد گرد و غبار در بازۀ زمانی مذکور داشته است. همچنین نتایج نشان داد که بالاترین همبستگی مربوط به ایستگاه بندر ماهشهر بین شاخص‌های NDVI و SPEI(PM12) به‌ترتیب با ضرایب همبستگی پیرسون و اسپیرمن 44/0 و 46/0 و بیشترین مقدار همبستگی منفی در ایستگاه مسجد سلیمان بین شاخص‌های NDVI و DU06 به ترتیب با ضرایب همبستگی پیرسون و اسپیرمن 37/0-  و 47/0- رخ داده است. نتایج به‌دست آمده در استان خوزستان تقریباً منطقی است زیرا با افزایش شاخص خشک‌سالی (کاهش میزان خشکی)، شاخص NDVI افزایش و با بیشتر شدن گرد و غبار مقدار NDVI کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Correlation analysis of drought-dust and its relationship with vegetation changes in Khuzestan province

نویسندگان [English]

  • Haniyeh Mohammadi
  • Javad Bazrafshan
  • Abdolmajid Liaghat
Department of Irrigation and Reclamation Engineering, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Drought, one of the most complex natural phenomena, causes significant direct and indirect damage to different sectors annually. The purpose of this study was to monitor drought, dust, and vegetation at five stations in the Khuzestan Province over a statistical period of 30 years (1990-2019). In this study, from the hourly data of horizontal visibility, the codes of the Meteorological Organization as well as the data of the synoptic station in the daily time frame were used to obtain the drought indices (SPEI and SPI) and the frequency variable of dust storms (DU) in time windows of 1, 3, 6, and 12 months. After calculating the indices of drought, dust and vegetation, they were combined with the empirical copula function method. The station that had the best correlation between the three climatic indices of dust-drought-vegetation was considered a representative station, and the three-variable coupling among the desired indices was investigated at that station. The results showed according to the SPI index, severe droughts occurred in the province from 1999 to 2003 and 2008 to 2012, which had a lot of negative effects on the soil of the region, as well as the formation of dust generating centers in the mentioned time period. Also, the results showed that the highest correlation was related to Bandar Mahshahr station between NDVI and SPEI (PM12) indices with Pearson and Spearman correlation coefficients of 0.44 and 0.46, respectively, and the highest negative correlation at Masjid Suleiman station between NDVI and DU06 occurred with Pearson and Spearman correlation coefficients of -0.37 and -0.47, respectively. The results obtained in Khuzestan Province are almost realistic as the drought index increased, the NDVI index increased, and as the dust increased, the NDVI value decreased.

کلیدواژه‌ها [English]

  • Dust
  • NDVI
  • Normalized Vegetation Index
  • Spearman correlation
  • three-variable couplet

Correlation analysis of drought-dust and its relationship with vegetation changes in Khuzestan province

 

EXTENDED ABSTRACT

Background

Changes in vegetation can have a significant effect on drought and dust in the western and southwestern regions of the country. Vegetation acts as an important factor in the balance of water and soil, the amount of transpiration evaporation, water absorption, reducing soil erosion, and stabilizing soil and dust particles. If vegetation cover decreases, transpiration evaporation decreases, which may lead to an increase in drought. On the other hand, drought can also have a significant effect on vegetation. Dust particles may also be deposited on the leaves and surfaces of plants, disturbing the performance of photosynthesis and transpiration evaporation of plants. Therefore, considering the importance and mutual influence of the three phenomena of drought, dust, and vegetation in the western regions of Iran, it is necessary to monitor and integrate the indicators of these three phenomena to determine the effects and mutual relations of the phenomena, which can be compared and discussed.

purpose

In this study, the integrated monitoring of drought, dust and vegetation in five stations of Khuzestan province (Ahvaz, Bandar Mahshahr, Bostan, Masjid Suleiman and Safi Abad) with a statistical period of 30 years (1990-2019) was done. For this purpose, from the hourly data of horizontal visibility, the codes of the Meteorological Organization, as well as the data of precipitation, minimum temperature, maximum temperature, sunny hours, relative humidity, and wind speed in the daily time window were used to obtain drought indices (SPEI and SPI). The frequency variables of dust storms (DU) were used in time windows of 1, 3, 6, and 12 months. In addition, to obtain the NDVI, Landsat satellite images were extracted monthly during the statistical period.

Methods

After calculating the indices of drought, dust, and vegetation, they were combined using the empirical copula function method. The station that had the best correlation between the three climatic indices of dust-drought-vegetation was considered the representative station, and the three-variable coupling between the desired indices was investigated at that station.

Results and Discussion

The results showed that according to the SPI index, severe droughts occurred in the province from 1999 to 2003 and 2008 to 2012, which had many negative effects on the soil of the region, as well as the formation of dust-generating centers in the mentioned time period. On the other hand, the SPEI-TH index, compared to other indices, can detect drought and accurately determine the sequence of periods. Also, the results showed that the highest correlation related to Bandar Mahshahr station between NDVI and SPEI (PM12) indices with Pearson and Spearman correlation coefficients of 0.44 and 0.46, respectively, and the highest negative correlation at Masjid Suleiman station between NDVI and DU06 occurred with Pearson and Spearman correlation coefficients of -0.37 and -0.47, respectively. The results obtained in Khuzestan Province are almost logical because with an increase in the drought index (incidence of drought or positive index), the NDVI index also increases, and as the dust increases, the NDVI value decreases.

Abdolshahnejad, M., Khosravi, H., Nazari Samani, A., Zehtabian, G., & Alambaigi, A. (2020). Determining the Conceptual Framework of Dust Risk Based on Evaluating Resilience (Case Study: Southwest of Iran). Strategic Research Journal of Agricultural Sciences and Natural Resources5(1), 33-44. (In Persian).
Alavi Panah, S. K. (2011). Principles of modern remote sensing and interpretation of satellite images and aerial photographs. Tehran University Press, third edition, 783 pages. (In Persian).
An, L., Che, H., Xue, M., Zhang, T., Wang, H., Wang, Y., Zhou, C., Zhao, H., Ke Gui, Yu., Zheng, Tianze Sun, Yuanxin, Liang, Enwei., Sun, Hengde, Zhang., & Zhang, X. (2018). Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016. Relationships with surface conditions and climate change Science of The Total Environment, (633), 452-46.
Ansari ghojghar, M., Pourgholam-Amiji, M., & Araghinejad, S. (2021). Investigating the Relationship between Drought and Trend of the Frequency of Dust Storms in the West and Southwest of Iran. Iranian Journal of Soil and Water Research51(11), 2839-2852. doi: 10.22059/ijswr.2020.304439.668648. (In Persian).
Araghinejad, S., Ansari Ghojghar, M., PourGholam Amigi, M., Liaghat, A., & Bazrafshan, J. (2022). The Effect of Climate Fluctuation on Frequency of Dust Storms in Iran. Desert Ecosystem Engineering7(21), 13-32. doi: 10.22052/deej.2018.7.21.11. (In Persian).
Bao, G., Qin, Z., Bao, Y., Zhou, Y., Li, W., & Sanjjav, A. (2014). NDVI-based long-term vegetation dynamics and its response to climatic change in the Mongolian Plateau. Remote Sensing, 6(9), 8337-8358.
Bazrafshan, J., & Khalili, A. (2013). Spatial analysis of drought over Iran during 1963-2003. Desert, 18, 63-71.
Bijaber, N., El Hadani, D., Saidi, M., Svoboda, M., Wardlow, B., Hain, C., & Rochdi, A. (2018). Developing a remotely sensed drought monitoring indicator for Morocco. Geosciences, 8(2), 55.
Boroghani, M., Moradi, H.R., Zangane Asadi, M.A., & Pourhashemi, S. (2016). Evaluation of the role of drought in frequency of dust in Khorasan Razavi province. Journal of Environmental Science and Technology, 21(5), 111-122. (In Persian).
Ebrahimzadeh, S., Bazrafshan, J., & Ghorbani, K. (2013). Study of plant vegetation variations using remote sensing and ground-based drought indices (Case study: Kermanshah province). Journal of Agricultural Meteorology1(1), 37-48. (In Persian).
Gao, T., Han, J., Wang, Y., Pei, H., & Lu, S. (2012). Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy Lands in northern China during 2001–2008. Meteorological Applications, 19(3), 265-278.
Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media.
Kogan, F. (1993). United states droughts of late 1980's as seen by NOAA polar orbiting satellites. Paper presented at the Geoscience and Remote Sensing Symposium, 1993. IGARSS'93. Better Understanding of Earth Environment, International.
Li, C., Leal Filho, W., Yin, J., Hu, R., Wang, J., Yang, C., & Ayal, D.Y. (2018). Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. Journal of cleaner production, 179, 210-216.
Mahmoodimahpash, N., & Souri, B. (2020). Detecting origin of dust-fall using ions ratio and morphology of the particles in western Iran. Journal of Natural Environment73(2), 355-367. doi: 10.22059/jne.2020.294726.1874. (In Persian).
McKee, T.B., Doesken, N.J., & Kleist J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology: American Meteorological Society, 17(22), 179-183.
Mostafazadeh, R., Shahabi, M., & Zabihi, M. (2015). Analysis of meteorological drought using Triple Diagram Model in the Kurdistan Province, Iran. Geographical Planning of Space5(17), 129-140. (In Persian).
Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, GH., & Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric environment, 173, 265-276.
Nateghi S, Ghohardoust A, & Soleimani Sardoo F. (2022). Investigating the Effect of Vegetation on the Occurrence of Dust Phenomenon (Case Study: Hormozgan Province). E.E.R, 12 (2), 43-60. URL: http://magazine.hormozgan.ac.ir/article-1-656-fa.html. (In Persian).
O’Loingsigh, T., McTainsh, G., Tews, E., Strong, C., Leys, J., Shinkfield, P., & Tapper, N. (2014). The Dust Storm Index (DSI): a method for monitoring broadscale wind erosion using meteorological records. Aeolian Res, 12, 29–40.
Oluleye, A., & Ojo, J. S. (2020). Detection of dust pollution using a Ka-band Doppler radar in a tropical location of West Africa. J. Pollut. Eff. Control8, 241.
Pearson, K. (1897). Mathematical contributions to the theory of evolution. on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the royal society of London, 60 (359-367), 489-498.
Press, V., & Teukolsky, F. (1992). Numerical Recipes in C: The Art of Scientific Computing (2nd Ed.). Journal of Simulation, 31(1), 640.
Salmabadi, H., Khalidy, R., & Saeedi, M. (2020). Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmospheric Research, 241, 104947.
Shabani, K., & Khosravipour, B. (2011). Consequences of dust in the agricultural sector of Khuzestan province. the first national conference on sustainable development strategies. Tehran, Ministry of Interior. (In Persian).
shahsavani, A., nadafi, K., yarahmadi, M., kermani, M., & yarahmadi, E. (2012). Investigation patterns, formation mechanisms and impacts of dust haze. Nivar37(80-81), 65-82. (In Persian).
Shaker Sureh, F., & Asadi, E. (2022). Meteorological and hydro-logical drought communication in Salmas Plain. Desert Ecosystem Engineering8(22), 89-100. doi: 10.22052/deej.2018.7.22.59. (In Persian).
Shong Chok, N. (2010). Pearson’s Versus Spearman’s and Kendal’s Correlation Coefficients for Continuous Data. M.Sc. thesis, University of Pittsburgh, 43pp.
Sklar, A. (1959). Distribution functions of n Dimensions and Margins. Publications of the Institute of Statistics of the University of Paris, 8, 229-231.
Tajbakhsh, S., Eisakhani, N., & Fazl Kazemi, A. (2015). Assessment of meteorological drought in Iran using standardized precipitation and evapotranspiration index (SPEI). Journal of the Earth and Space Physics41(2), 313-321. doi: 10.22059/jesphys.2015.52888. (In Persian).
Vicente-Serrano, S.M., Begueria, S., & Lpez-Moreno, J. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climatology, 23(7), 1696-718.
Zareabyaneh, H., GHobaeisoogh, M., & Mosaedi, A. (2015). Drought Monitoring Based on Standardized Precipitation Evaoptranspiration Index (SPEI) Under the Effect of Climate Change. Water and Soil29(2), 374-392. (In Persian).
Zhang, A., & Jia, G. (2013). Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 1223
Zhang, Q., Kong, D.D., Singh, V. P., & P. J. Shi. (2017). Response of vegetation to different time-scales drought across China: spatiotemporal patterns, causes and implications. Global Planet. Change, 152, 1e11.
Ziqiang, M., & Z. Quanxi. (2007). Damage effects of dust storm PM2.5 on DNA in Alveolar Macrophages and Lung cells of rates. Food and Chemical Toxicology, PP 1363-1374.
Zoljoodi, M., Didevarasl, A., & Saadatabadi, A. R. (2013). Dust events in the western parts of Iran and the relationship with drought expansion over the dust-source areas in Iraq and Syria.
Zou Alfaghari, H., & Abedzadeh, M. (2006). A synoptic analysis of dust systems at the west part of Iran. geography and development, 3(6), 173-188. SID. https://sid.ir/paper/76993/en. (In Persian).