تعیین بهترین شیوه‌های مدیریتی آلاینده‌های غیرنقطه‌ای با استفاده از مدل ArcSWAT (مطالعه موردی: حوضه آبریز دشت بزرگ)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران،

2 دانشیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

3 استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران

چکیده

بهترین شیوه‌های مدیریتی راهکارهایی در راستای کاهش آلاینده‌های غیر نقطه‌‎ای در حوضه‌های آبریز هستند. استفاده از این راهکارها مستلزم شناخت ویژگی‌های حوضه و سرمایه‌گذاری در حوضه‌های آبریز است. بر این مبنا کاربرد مدل‌های کامپیوتری به منظور شبیه‌سازی شرایط واقعی حوضه‌های آبریز کمک موثری به کاهش وقت و هزینه می‌کند. هدف از این پژوهش بررسی اثر سناریوهای مدیریتی مختلف بر هدررفت آلاینده‌های غیر نقطه‌ای در حوضه‌ی آبریز دشت بزرگ در ایران با استفاده از مدل ArcSWAT است. برای گردآوری داده‌های مشاهده‌ای، نمونه‌برداری از آب رودخانه از شهریور ماه 1399 تا خرداد 1400 انجام شد. داده‌های مشاهده‌ای ماه‌های شهریور تا اسفند برای واسنجی مدل و داده‌های مشاهده‌ای ماه‌های فروردین تا خرداد برای اعتبار سنجی مدل استفاده گردید. پس از شناسایی مناطق بحرانی، سه سناریو غیر سازه‌ای و پنج سناریو سازه‌ای به مدل اعمال شد. نتایج نشان داد که مدل ArcSWAT پیش‌بینی بسیار خوبی در برآورد بار آلاینده‌های غیر نقطه‌‎ای (نیترات، نیتروژن کل و فسفر کل) داشته است. سناریوهای تناوب «گندم- سیب زمینی- گوجه فرنگی» و «گندم، برنج-گندم، ماش-گندم» بیشترین هدررفت نیترات و نیتروژن کل را نشان دادند درحالی‌که کمترین میزان هدررفت فسفر کل در تناوب «گندم- سیب زمینی- گوجه فرنگی» مشاهده شد. روش‌های تراس‌بندی و بافر گیاهی به عنوان روش‌های برتر کاهش بار آلاینده‌های غیر نقطه‌‎ای شناخته شدند. یافته‌های این پژوهش نشان می‌دهد که انجام اقدامات مدیریتی در کاربری‌های غالب و در جهت کاهش درجه شیب می‌تواند بار آلاینده‌های غیر نقطه‌‎ای را به مقدار قابل توجهی کاهش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the best management practices of non-point pollutants using ArcSWAT model (Case study: Dashte Bozorg catchment)

نویسندگان [English]

  • Lida Vasel 1
  • Ahmad Farrokhian Firouzi 2
  • Ataallah Khademalrasoul 3
1 Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Associate Professor, Department of soil science, Faculty of Agriculture , Shahid Chamran University of Ahvaz, Iran
3 Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

The best management practices are solutions to reduce non-point pollution in catchments. In many cases, the use of these solutions requires knowing the features of the watershed and investing in this sector. Accordingly, the use of computer models to simulate real catchment conditions can be an effective way to reduce time and cost. This research aimed to investigate the effect of different management scenarios on non-point source pollution losses in Dashte Bezorg catchment in Iran using the ArcSWAT model. To collect observational data, river water was sampled from September 2020 to June 2021. Calibration data were selected from September to March and validation data from April to June. After identifying critical areas, three non-structural scenarios and five structural scenarios were simulated using the model. The results revealed that the ArcSWAT model provides a good prediction in estimating non-point source pollution loads (nitrate, total nitrogen, and total phosphorus). The "wheat-potato-tomato" and "wheat, rice-wheat, mung bean-wheat" rotation scenarios showed the highest total nitrate and nitrogen loss, while the lowest total phosphorus loss was observed in the "wheat-potato-tomato" rotation. The terracing and buffer strip methods were recognized as the best methods of reducing the load of non-point pollution. The findings showed that the application of management practices in dominant land use and reduc the degree of slope can significantly reduce the non-point source pollution loads.

کلیدواژه‌ها [English]

  • Conservation tillage
  • Crop rotation
  • Nitrogen
  • Phosphorous
  • Residue management

EXTENDED ABSTRACT

Introduction

The best management practices are methods to reduce non-point source pollution in catchments. The use of these methods requires knowing the features and investing in catchments. Accordingly, the use of computer models to simulate the actual condition of catchments effectively helps to reduce time and cost. The Soil and Water Assessment Tool (SWAT) is a semi-distributed model to estimate nutrient losses in large watersheds.This research has aimed to investigate the effect of different management scenarios on the loss of non-point source pollutions (nitrate, total nitrogen, and total phosphorus) in Dashte Bezorg catchment in Iran using the ArcSWAT model.

 

Materials and Methods

To collect observational data, river water was sampled from September 2020 to June 2021. Calibration data were selected from September to March and validation data from April to June. SUFI-2 algorithm was applied to sensitivity analysis, calibration, validation, and uncertainty analysis. Critical areas of non-point source pollution loads were also identified, and three agricultural scenarios including residue management, tillage, and crop rotation were applied. Furthermore, five structural scenarios were simulated including grassed waterway, vegetated buffer strip, strip cropping, contouring, and terracing. The effect of different scenarios on nitrate, total nitrogen, and total phosphorus losses in the catchment was investigated.

 

Results

The values of R2, NS, and BIAS statistical indices for the monthly nitrate were 0.82, 0.82, and -3.8 for the calibration period and 0.99, 0.99, and -2.9 for the validation period, respectively. For total nitrogen, R2, NS, and BIAS were 0.92. 0.9 and 4.3 for the calibration and 0.9. 0.7 and -18.3 for the validation, respectively. For total phosphorus, R2, NS, and BIAS were 1.00, 1.00, and -1.8 for the calibration; and 1.00, 1.00, and 0.5 for validation, respectively. The results showed that the ArcSWAT model provides a good prediction in estimating non-point source pollutant loads. The "wheat-potato-tomato" and "wheat, rice-wheat, mung bean-wheat" rotation scenarios showed the highest nitrate and total nitrogen loss, while the lowest total phosphorus loss was observed in the "wheat-potato-tomato" rotation. The highest reduction of nitrate loss in the no-tillage and minimum tillage scenarios were obtained under rotation number 3 by 2.76 and 2.61 percent, respectively. The amount of total nitrogen loss in no-tillage and minimum-tillage scenarios under rotation number 3 was reduced to 2.21 and 2.08%, respectively. The methods of terracing and vegetated buffer strips were recognized as the best strategies for reducing non-point pollution loads. However, other structural methods were also effective.

 

Conclusion

This study has shown that identifying critical areas can be a suitable strategy for implementing management practices in those areas. The application of management practices in dominant land use can significantly reduce the non-point source pollution loads.

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413– 430. https://doi.org/10.1016/j.jhydrol.2006.09.014
Abbaspour, K.C. (2015). SWAT-Calibration and Uncertainty Programs (CUP)—A User Manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, 1-100.
Akhavan, S., Abedi-Koupai, J., Mousavi, F., Afyuni, M., Eslamian, S., & Abbaspour, K.C. (2010). Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture, Ecosystems and Environment 139(4), 675–688. https://doi.org/10.1016/j.agee.2010.10.015
Armstrong, F.A.J. (1963). Determination of nitrate in water by ultraviolet spectrophotometry. Analytical Chemistry, 35(9), 1292-1294. https://doi.org/10.1021/ac60202a036
Ashworth, A. J., Moore, P. A., Pote, D. H., Owens, P. R., Martin, J. W., & Anderson, K. R. (2021). Conservation management practices reduce non-point source pollution from grazed pastures. Heliyon, 7(2), e06238. https://doi.org/10.1016/J.HELIYON.2021.E06238
Baird, R.B., Eaton, A.D., & Rice, E.W. eds (2017). Standard Methods for the Examination of Water and Wastewater, 23rd Edition. American Public Health Association, American Water Works Association, Water Environment Federation, Washington D.C.
Briak, H., Mrabet, R., Moussadek, R., Aboumaria, K. (2019). Use of a calibrated SWAT model to evaluate the effects of agricultural BMPs on sediments of the Kalaya river basin (North of Morocco). International Soil and Water Conservation Research, 7(2), 176–183. https://doi.org/10.1016/j.iswcr.2019.02.002
Carlos Mendoza, J. A., Chavez Alcazar, T. A., & Zuñiga Medina, S. A. (2020). Calibration and Uncertainty Analysis for Modelling Runoff in the Tambo River Basin, Peru, Using Sequential Uncertainty Fitting Ver-2 (SUFI-2) Algorithm. Air, Soil and Water Research, 14, 1–13. DOI: 10.1177/1178622120988707
Cibin, R., Chaubey, I., Helmers, M. J., Sudheer, K. P., White, M.J., & Arnold, J. G. (2018). An Improved Representation of Vegetative Filter Strips in SWAT. Transactions of the ASABE, 61(3), 1017–1024. https://doi.org/10.13031/trans.12661
Dakhlalla, A.O., & Parajuli, P.B. (2019). Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Information Processing in Agriculture, 6(1), 61-72. https://doi.org/10.1016/j.inpa.2018.08.007
Donmez, C., Sari, O., Berberoglu, S., Cilek, A., Satir, O., & Volk, M. (2020). Improving the Applicability of the SWAT Model to Simulate Flow and Nitrate Dynamics in a Flat Data-Scarce Agricultural Region in the Mediterranean. Water, 12(12), 3479. https://doi.org/10.3390/w12123479
Elfaki, J., Gafei, M., Sulieman, M., & Ali, M. (2016). Assessment of Calcimetric and Titrimetric Methods for Calcium Carbonate Estimation of Five Soil Types in Central Sudan. Journal of Geoscience and Environment Protection, 4(1), 120-127. doi: 10.4236/gep.2016.41014.
Epelde, A. M., Cerro, I., Sánchez-Pérez, J. M., Sauvage, S., Srinivasan, R., & Antigüedad, I. (2015).  Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrological Sciences Journal, 60(5), 825-843. http://dx.doi.org/10.1080/02626667.2014.967692
Fouilland, E., Trottet, A., Bancon-Montigny, C., Bouvy, M., le Floc’h, E., Gonzalez, J. L., Hatey, E., Mas, S., Mostajir, B., Nouguier, J., Pecqueur, D., Rochelle-Newall, E., Rodier, C., Roques, C., Salles, C., Tournoud, M. G., & Vidussi, F. (2012). Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean Lagoon (Thau Lagoon, France). Estuarine, Coastal and Shelf Science, 113, 192–204. https://doi.org/10.1016/J.ECSS.2012.08.004
Gee, G. W., & Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters 1. Soil Science Society of America Journal, 43(5), 1004-1007.
Himanshu, S. K., Pandey, A., Yadav, B., & Gupta, A. (2019). Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil and Tillage Research, 192, 42-58. https://doi.org/10.1016/j.still.2019.04.016
Holas, J., Holas, M., & Chour, V. (1999). Pollution by phosphorus and nitrogen in water streams feeding the Zelivka drinking water reservoir. Water Science and Technology, 39(12), 207–214. https://doi.org/10.1016/S0273-1223(99)00337-6
Holz, M., & Augustin, J. (2021). Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis. Geoderma, 397(4), 115045. doi: 10.1016/j.geoderma.2021.115045
Howard, R.F., & Singer, M. J., (1981). Measuring Forest Soil Bulk Density using Irregular Hole, Paraffin Clod, and Air Permeability. Forest Science, 27(2), 316–322. https://doi.org/10.1093/forestscience/27.2.316
Imani, S., Delavar, M., & Niksokhan, M.H. (2017). Simulation and Assessment of Management Practices for Reduction of Nutrients Discharge to the Zrebar Lake Using SWAT Model. Iran-Water Resources Research, 13(1), 69-87. (In Persian)
Jalali, M., & Jalali, M. (2017). Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus. Chemosphere, 171, 106-117. https://doi.org/10.1016/j.chemosphere.2016.12.042
Kuti, I.A., & Ewemoje, T.A. (2021). Modelling of sediment yield using the soil and water assessment tool (SWAT) model: A case study of the Chanchaga Watersheds, Nigeria. Scientific African, 13: e00936. https://doi.org/10.1016/j.sciaf.2021.e00936.
Lamba, J., Thompson, A. M., Karthikeyan, K. G., Panuska, J. C., & Good, L. W. (2016). Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Journal of Sediment Research, 31(4), 386-394. https://doi.org/10.1016/j.ijsrc.2016.06.004
Li, S., Liu, C., Sun, P., & Ni, T. (2022). Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector: A case study of Taihu Lake, China. Science of The Total Environment, 816, 151617. https://doi.org/10.1016/J.SCITOTENV.2021.151617
Li, X. na, Zhang, W. wei, Wu, J. ying, Li, H. jie, Zhao, T. kai, Zhao, C. qiao, Shi, R. shuang, Li, Z. shuang, Wang, C., & Li, C. (2021). Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain—A field study in a modern agricultural park. Ecological Engineering, 169, 106310. https://doi.org/10.1016/J.ECOLENG.2021.106310
Liang, K., Jiang, Y., Qi, J., Fuller, K., Nyiraneza, J., & Meng, F.-R. (2020). Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada. Science of the Total Environment, 729, 138793. https://doi.org/10.1016/j.scitotenv.2020.138793
Liang, X., Zhao, H., He, Y., Zhu, L., Zou, Y., & Ye, C. (2022). Spatiotemporal characteristics of agricultural nitrogen and phosphorus emissions to water and its source identification: A case in Bamen Bay, China. Journal of Contaminant Hydrology, 245, 103936. https://doi.org/10.1016/j.jconhyd.2021.103936
Liu, G., Deng, L., Wu, R., Guo, S., Du, W., Yang, M., Bian, J., Liu, Y., Li, B., & Chen, F. (2020). Determination of nitrogen and phosphorus fertilisation rates for tobacco based on economic response and nutrient concentrations in local stream water. Agriculture, Ecosystems & Environment, 304, 107136. https://doi.org/10.1016/J.AGEE.2020.107136
Liu, J., Liu, X., Wang, Y., Li, Y., Li, Y., Yuan, H., Fang, L., & Wu, J. (2022). Upstream 2000 ha is the boundary of the stream water nitrogen and phosphorus saturation concentration threshold in the subtropical agricultural catchment. CATENA, 211, 105960. https://doi.org/10.1016/j.catena.2021.105960
Mahzari, S., Kiani, F., sadatAzimi, M., & Khormali, F. (2016). Using SWAT Model to Determine Runoff, Sediment Yield and Nitrate Loss in Gorganrood Watershed, Iran. Ecopersia, 4(2), 1359-1377. http://ecopersia.modares.ac.ir/article-24-7489-en.html
Martínez-Dalmau, J., Berbel, J., & Ordóñez-Fernández, R. (2021). Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability, 13(10), 5625; https://doi.org/10.3390/su13105625
Mclean, E.O. (1982). Soil pH and Lime Requirement, Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, edited by Page, A. L. Madison, 199-224.
Me, W., Abell, J. M.,  & Hamilton, D. P.  (2015). Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrology and Earth System Sciences., 19, 4127–4147, 2015
Merriman, K. R., Daggupati, P., Srinivasan, R., & Hayhurst, B. (2019). Assessment of site-specific agricultural Best Management Practices in the Upper East River watershed, Wisconsin, using a field-scale SWAT model. Journal of Great Lakes Research, 45(3), 619–641. https://doi.org/10.1016/j.jglr.2019.02.004
Moriasi, D. N., Verser, J. A., & Cram, A. C. (2022). Using SWAT-MEA to determine optimal placement of crop management systems under no-till. Agronomy Journal, 114(2), 1115-1127. https://doi.org/10.1002/agj2.20996
Noori, Z., Salajegheh, A., Malekian, A., & Moghadamnia, A. (2018). Investigating the effects of best management practices on the reduction of point and non-point source pollution of water using SWAT model (Case Study: Seimareh River). Iranian Journal of Soil and Water Research, 48(5), 995–1006. doi: 10.22059/ijswr.2018.225610.667617. (In Persian)
O’Geen, A. T., Budd, R., Gan, J., Maynard, J. J., Parikh, S. J., & Dahlgren, R. A. (2010). Chapter One-Mitigating Nonpoint Source Pollution in Agriculture with Constructed and Restored Wetlands. Advances in Agronomy, 108, 1–76. https://doi.org/10.1016/S0065-2113(10)08001-6
Oyedotun, T. D. T., & Ally, N. (2021). Environmental issues and challenges confronting surface waters in South America: A review. Environmental Challenges, 3, 100049. https://doi.org/10.1016/J.ENVC.2021.100049
Panagopoulos, I., Mimikou, M., & Kapetanaki, M. (2007).  Estimation of Nitrogen and Phosphorus Losses to Surface Water and Groundwater Through the Implementation of the SWAT Model for Norwegian Soils. Journal of Soils and Sediments, 7(4), 223–231. https://doi.org/10.1065/jss2007.04.219
Page, A. L., Miller R. H., & Keeney. D. R. (1982). Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties. American Society of Agronomy, Wisconsin, USA.
Peng, K., Li, J. K., Hao, G.R., Liu, Y. W., Zhou, X., & Xie, W. F. (2022). Characteristics of non-point source pollution based on monitoring experiment in the Yingwugou small watershed, China, Ecohydrology & Hydrobiology, https://doi.org/10.1016/j.ecohyd.2022.09.001.
Rezazadeh, M. S., Bakhriari, B., Abbaspour, K., & Ahmadi M. M. (2018). Simulation of Runoff, sediment and evapotranspiration through management scenarios to reduce sediment load using SWAT model. Iran-Watershed Management Science & Engineering; 12 (40) :41-50. http://jwmsei.ir/article-1-492-fa.html. (In Persian)
Ricci, G. F., Jeong, J., de Girolamo, A. M., & Gentile, F. (2020). Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy, 90, 104306. https://doi.org/10.1016/j.landusepol.2019.104306
Risal, A., & Parajuli, P.B. (2022). Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales. Water Resources Management, 36, 1093–1105. https://doi.org/10.1007/s11269-022-03075-7
Risal, A., & Parajuli, P. B. (2019). Quantification and simulation of nutrient sources at watershed scale in Mississippi. Science of The Total Environment, 670, 633-643. https://doi.org/10.1016/j.scitotenv.2019.03.233.
Strickland, J.D.H., & Parsons, T.R.  (1965). A Manual of Sea Water Analysis, 2nd ed. Fisheries Research Board of Canada, Ottawa.
Shannak, S. (2017). Calibration and Validation of Swat for Sub-Hourly Time Steps Using Swat-Cup. International Journal of Sustainable Water and Environmental Systems, 9(1): 21-27.
Shope, C. L., Maharjan, G. R., Tenhunen, J., Seo, B., Kim, K., Riley, J., Arnhold, S., Koellner, T., Ok, Y. S., Peiffer, S., Kim, B., Park, J. H., & Huwe, B. (2014). Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrology and Earth System Sciences, 18, 539–557. https://doi.org/10.5194/HESS-18-539-2014
Song, K., Lu, Y., Dao, G., Chen, Z., Wu, Y., Wang, S., Liu, J., & Hu, H. Y. (2022). Reclaimed water for landscape water replenishment: Threshold nitrogen and phosphorus concentrations values for bloom control. Algal Research, 62, 102608. https://doi.org/10.1016/J.ALGAL.2021.102608
Strauch, M., Lima, J.E., Volk, M., Lorz, C., & Makeschin, F. (2013). The impact of Best Management Practices on simulated streamflow and sediment load in a Central Brazilian catchment. Journal of Environmental Management, 127, S24-S36. doi: 10.1016/j.jenvman.2013.01.014
Tang, F.F., Xu, H.S., & Xu, Z.X. (2012). Model calibration and uncertainty analysis for runoff in the Chao River Basin using sequential uncertainty fitting. Procedia Environmental Sciences, 13, 1760 – 1770. https://doi.org/10.1016/j.proenv.2012.01.170
Tokatlı, C., & Varol, M. (2021). Variations, health risks, pollution status and possible sources of dissolved toxic metal(loid)s in stagnant water bodies located in an intensive agricultural region of Turkey. Environmental Research, 201, 111571. https://doi.org/10.1016/J.ENVRES.2021.111571
Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209, 62-72. https://doi.org/10.1016/j.agwat.2018.07.006
USDA-NRCS. (2007). Engineering Field Handbook, Part 650, Chapter 7: Grassed waterways. Washington, D.C.: USDA Natural Resources Conservation Service.
van Genuchten, M. Th., Leij, F.J. & Yates, S.R. )1991(. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Version 1.0. (EPA Report 600/2-91/065), U.S. Salinity Laboratory, USDA, ARS, Riverside, California.
Walkley, A., & Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. 
Yang, J. L., Zhang, G. L., Shi, X. Z., Wang, H. J., Cao, Z. H., & Ritsema, C. J. (2009). Dynamic changes of nitrogen and phosphorus losses in ephemeral runoff processes by typical storm events in Sichuan Basin, Southwest China. Soil and Tillage Research, 105(2), 292–299. https://doi.org/10.1016/J.STILL.2009.04.003
Zhang, X., Chen, P., Dai, S., & Han, Y. (2022). Analysis of non-point source nitrogen pollution in watersheds based on SWAT model. Ecological Indicators, 138, 108881. https://doi.org/10.1016/J.ECOLIND.2022.108881