ایستگاه سینوپتیک قزوین، 1349-1399، سازمان هواشناسی ایران.
بی همتا؛ محمدرضا، زارع چاهوکی؛ محمد علی. (1389). اصول آمار در علوم مرتع داری. ویراش سوم. تهران. انتشارات دانشگاه تهران. 300صفحه.
سازمان زمین شناسی ایران، 1374. نقشه چهارگوش زمین شناسی. شماره 111. زمین شناسی.
موسوی؛ سیدروح اله، سرمدیان؛ فریدون، رحمانی؛ اصغر. (1398). مدلسازی و پیشبینی مکانی کلاس خاک با استفاده از الگوریتم یادگیری رگرسیون درختی توسعهیافته و جنگلهای تصادفی در بخشی از اراضی دشت قزوین. تحقیقات آب و خاک ایران, 50(10), 2525-2538. doi: 10.22059/ijswr.2019.280905.668198.
Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A. X., & Scholten, T. (2014). Hyper-scale digital soil
Bihamta, M., & Zare-chahooki, M. (2011). Principles of Statistics in range sciences. 3rd Ed. Tehran,
University of Tehran Press: 300. (In Persian).
Beucher, A., Rasmussen, C. B., Moeslund, T. B., & Greve, M. H. (2022). Interpretation of convolutional neural networks for acid sulfate soil classification.
Frontiers in Environmental Science, 679(9), 1-14.
https://doi.org/10.3389/fenvs.2021.809995
Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards Jr, T. C. (2015). Machine learning for predicting soil classes in three semi-arid landscapes.
Geoderma, 239(1), 68-83.
https://doi.org/10.1016/j.geoderma.2014.09.019
Cavazzi, S., Corstanje, R., Mayr, T., Hannam, J., & Fealy, R. (2013). Are fine resolution digital elevation models
Chaney, N. W., Wood, E. F., McBratney, A. B., Hempel, J. W., Nauman, T. W., Brungard, C. W., & Odgers, N. P. (2016). POLARIS: A 30-meter probabilistic soil series map of the contiguous United States.
Geoderma, 274(15), 54-67.
https://doi.org/10.1016/j.geoderma.2016.03.025
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., ... & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific Model Development, 8(7), 1991-2007.
Dane, J. H., & Topp, C. G. (Eds.). (2020). Methods of soil analysis, Part 4: Physical methods (Vol. 20). John Wiley & Sons.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.
Ecography,
36(1), 27-46.
https://doi.org/10.1111/j.1600-0587.2012.07348.x
Duan, M., & Zhang, X. (2021). Using remote sensing to identify soil types based on multiscale image texture
features. Computers and Electronics in Agriculture, 187(1), 106272.
Esfandiarpour-Boroujeni, I., Shahini-Shamsabadi, M., Shirani, H., Mosleh, Z., Bagheri-Bodaghabadi, M., & Salehi, M. H. (2020). Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord plain, Central Iran.
Catena, 193(1), 104648.
https://doi.org/10.1016/j.catena.2020.104648.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202(1), 18-27.
Geological Survey of Iran, 1995. Geological Quadrangle Map. No111.Geology. (inPersian)
Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas.
Water resources research,
39(12).
https://doi.org/10.1029/2002WR001426.
Heung, B., Hodúl, M., & Schmidt, M. G. (2017). Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes.
Geoderma,
290, 51-68.
https://doi.org/10.1016/j.geoderma.2016.12.001.
Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping.
Geoderma,
265, 62-77.
https://doi.org/10.1016/j.geoderma.2015.11.014.
Jamali, A., Mahdianpari, M., Mohammadimanesh, F., & Homayouni, S. (2022). A deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples. International Journal of Applied Earth Observation and Geoinformation, 115, 103095.
Jafari, A., Khademi, H., Finke, P. A., Van de Wauw, J., & Ayoubi, S. (2014). Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran.
Geoderma,
232, 148-163.
https://doi.org/10.1016/j.geoderma.2014.04.029.
Jiang, Z. D., Owens, P. R., Zhang, C. L., Brye, K. R., Weindorf, D. C., Adhikari, K., & Wang, Q. B. (2021). Towards a dynamic soil survey: Identifying and delineating soil horizons in-situ using deep learning.
Geoderma,
401, 115341.
https://doi.org/10.1016/j.geoderma.2021.115341.
Jensen, J. R. 2015. Introductory digital image processing: a remote sensing perspective (No. Ed. 4). Prentice-Hall Inc.
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, & C., Engelhardt, A., Team, R. C. (2020). Package ‘caret’. The R Journal, 223, 7.
Kwak, G. H., Park, C. W., Lee, K. D., Na, S. I., Ahn, H. Y., & Park, N. W. (2021). Potential of hybrid CNN-RF model for early crop mapping with limited input data.
Remote Sensing,
13(9), 1629.
https://doi.org/10.3390/rs13091629.
Lin, X., Li, C., Zhang, Y., Su, B., Fan, M., & Wei, H. (2017). Selecting feature subsets based on SVM-RFE and the overlapping ratio with applications in bioinformatics. Molecules, 23(1), 52:1-10.
Maynard, J. J., Salley, S. W., Beaudette, D. E., & Herrick, J. E. (2020). Numerical soil classification supports soil identification by citizen scientists using limited, simple soil observations.
Soil Science Society of America Journal,
84(5), 1675-1692.
https://doi.org/10.1002/saj2.20119.
Mirakzehi, K., Pahlavan-Rad, M. R., Shahriari, A., & Bameri, A. (2018). Digital soil mapping of deltaic soils: A case of study from Hirmand (Helmand) river delta. Geoderma, 313, 233-240.
Mousavi, S. R., Sarmadian, F., & Rahmani, A. (2020). Modelling and Prediction of Soil Classes Using Boosting Regression Tree and Random Forests Machine Learning Algorithms in Some Part of Qazvin Plain. Iranian Journal of Soil and Water Research, 50(10), 2525-2538. https://doi: 10.22059/ijswr.2019.280905.668198.
Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706.
https://doi.org/10.1016/j.measurement.2022.111706.
Neyestani, M., Sarmadian, F., Jafari, A., Keshavarzi, A., & Sharififar, A. (2021). Digital mapping of soil classes using spatial extrapolation with imbalanced data. Geoderma Regional, 26, e00422. https://doi.org/10.1016/j.geodrs.2021.e00422.
Nguyen, T. T., Pham, T. D., Nguyen, C. T., Delfos, J., Archibald, R., Dang, K. B., ... & Ngo, H. H. (2022). A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Science of the Total Environment, 804, 150187.
Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., Ferguson, R., Bailey, S., & McBratney, A. B. (2019). Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma, 352, 251-267.
Rad, M. R. P., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B., & Bogaert, P. (2014). Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232, 97-106.
https://doi.org/10.1016/j.geoderma.2014.04.036.
Rahmani, A., Sarmadian, F., Mousavi, S. R., & Khamoshi, S. E. (2019). Digital soil mapping using geomorphometric analysis and case-based fuzzy logic approach. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 863-866.
Qazvin synoptic station, metrological data from 1970-2019. Iranian metrological organization. (inPersian)
Shi, T., & Xu, H. (2019). Derivation of tasseled cap transformation coefficients for Sentinel-2 MSI at-sensor reflectance data.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
12(10), 4038-4048.
https://doi.org/10.1109/JSTARS.2019.2938388.
Shi, J., Yang, L., Zhu, A. X., Qin, C., Liang, P., Zeng, C., & Pei, T. (2018). Machine‐Learning Variables at Different Scales vs. Knowledge‐based Variables for Mapping Multiple Soil Properties.
Soil Science Society of America Journal,
82(3), 645-656.
https://doi.org/10.2136/sssaj2017.11.0392.
Schoeneberger, P. J., Wysocki, D. A., & Benham, E. C. (Eds.). (2012). Field book for describing and sampling soils. Government Printing Office.
Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons.
Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service.
Stumpf, F., Schmidt, K., Goebes, P., Behrens, T., Schönbrodt-Stitt, S., Wadoux, A., & Scholten, T. (2017). Uncertainty-guided sampling to improve digital soil maps. Catena, 153, 30-38.
Taghizadeh-Mehrjardi, R., Mahdianpari, M., Mohammadimanesh, F., Behrens, T., Toomanian, N., Scholten, T., & Schmidt, K. (2020). Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran.
Geoderma,
376, 114552.
https://doi.org/10.1016/j.geoderma.2020.114552.
Taghizadeh-Mehrjardi, R., Minasny, B., Toomanian, N., Zeraatpisheh, M., Amirian-Chakan, A., & Triantafilis, J. (2019). Digital mapping of soil classes using ensemble of models in Isfahan region, Iran.
Soil Systems,
3(2), 37.
https://doi.org/10.3390/soilsystems3020037.
Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., & Triantafilis, J. (2015). Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran.
Geoderma,
253, 67-77.
https://doi.org/10.1016/j.geoderma.2015.04.008.
Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J., & Zalidis, G. (2020). Employing a multi-input deep convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar imagery data.
Remote Sensing,
12(9), 1389.
https://doi.org/10.3390/rs12091389.
Van Wambeke, A. R. (2000). The Newhall Simulation Model for estimating soil moisture & temperature regimes. Conservation Service: Department of Crop and Soil Sciences Cornell University, Ithaca, NY USA. http://www.bfenvironmental.com/pdfs/nsmt.pdf.
Yang, L., Cai, Y., Zhang, L., Guo, M., Li, A., & Zhou, C. (2021). A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables.
International Journal of Applied Earth Observation and Geoinformation,
102, 102428.
https://doi.org/10.1016/j.jag.2021.102428.
Yang, J., Wang, X., Wang, R., & Wang, H. (2020). Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis–NIR spectroscopy.
Geoderma,
380, 114616.
https://doi.org/10.1016/j.geoderma.2020.114616.
Yan, Y., Kayem, K., Hao, Y., Shi, Z., Zhang, C., Peng, J., & Li, B. (2022). Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors.
Remote Sensing,
14(13), 3020.
https://doi.org/10.3390/rs14133020.
Zhang, J., Tian, H., Wang, P., Tansey, K., Zhang, S., & Li, H. (2022). Improving wheat yield estimates using data augmentation models and remotely sensed biophysical indices within deep neural networks in the Guanzhong Plain, PR China. Computers and Electronics in Agriculture, 192, 106616.
Zeraatpisheh, M., Ayoubi, S., Jafari, A., & Finke, P. (2017). Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 285, 186-204.
Zinck, J. A., Metternicht, G., Bocco, G., & Del Valle, H. F. (Eds.). (2015). Geopedology: An integration of geomorphology and pedology for soil and landscape studies. Springer.