پهنه‌بندی خطر کاویتاسیون در تنداب سرریز سد سورک با الگوریتم طبقه‌بندی نزدیک‌ترین همسایه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه خوازمی، تهران، ایران

2 استادیار، گروه عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران

چکیده

کاویتاسیون یکی از عوامل خرابی تنداب سرریزها است که جهت کنترل این پدیده پهنه‌بندی خطر آن ضرورت دارد. در این تحقیق برای دستیابی به روشی جهت پهنه‌بندی خطر کاویتاسیون، از اطلاعات سرریز سد سورک در استان چهارمحال بختیاری استفاده شد. در روند مدل‌سازی ابتدا مدل هندسی سرریز ساخته شد و پس از شبکه‌بندی و اعمال شرایط مرزی، تحلیل جریان انجام شد. شاخص کاویتاسیون با توجه به مقادیر پارامترهای سرعت، ارتفاع جریان، شیب شوت و دیگر پارامترهای لازم، در 18 مقطع محاسبه گردید. نتایج حاصله از نرم‌افزار Flow-3D برای سنجش کیفی وضعیت خطر کاویتاسیون در تنداب سرریز سد سورک از دقت مناسبی برخوردار است؛ به‌طوریکه خطای RMSE فشار 2-10×26/0 پاسکال و سرعت2-10× 23/0 متربرثانیه نسبت به نتایج آزمایشگاهی بدست آمد. همچنین پارامترهای تاثیرگذار بر کاهش کاویتاسیون از قبیل زبری و هوادهی مورد بررسی قرار گرفت. نتایج نشان می‌داد در فاصله 70 تا 95 متری از تاج سرریز احتمال وقوع کاویتاسیون و خسارات ناشی از آن وجود دارد. نتایج تحلیل حساسیت نشان داد که استفاده از زبری یکنواخت 5/2 میلی‌متری و هوادهی در طول شوت موجب افزایش شاخص کاویتاسیون می‌شود. در این زبری مناطق مستعد وقوع کاویتاسیون به مقاطع پایین دست شوت جابجا می‌شوند. در زبری یکنواخت 5/1 میلی‌متر در طول کل سرریز، نتایج الگوریتم نزدیکترین همسایگی در دو مقطع پایانی 75/99 و 105 متری و در زبری یکنواخت 5/2 میلی‌متر در طول کل سرریز در دو مقطع 42 و 25/89 متری از تاج سرریز نسبت مدل Flow-3D بحرانی‌تر است که به معنی آسیب‌پذیری بیشتر این نواحی در مقابل پدیده کاویتاسیون است.

کلیدواژه‌ها


عنوان مقاله [English]

Zonation of cavitation hazard in the chute spillway of Surk dam with Nearest Neighbor Classification Algorithm

نویسندگان [English]

  • Amir Hossein Asadian 1
  • Seyed Shahab Emamzadeh 2
1 MSc student, Department of Civil Engineering, Kharazmi University, Tehran, Iran
2 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.
چکیده [English]

Cavitation is one of the failure factors of spillways, which requires risk zoning to control this phenomenon. In this research, to obtain a method for zoning the risk of cavitation, the spillway information of Surk dam in Chaharmahal Bakhtiari province  was used. In the modeling process, first, the geometric model of the overflow was constructed and after meshing and applying boundary conditions, flow analysis was done. The cavitation index was calculated in 18 sections according to the values of flow velocity and height, chute slope, and other necessary parameters. The results of Flow-3D software for qualitative assessment of the cavitation risk situation in Surk dam spillway are of appropriate accuracy; Thus, the RMSE error of pressure 0.26×10-2 pascal and velocity 0.23×10-2 m/s was obtained compared to the laboratory results. Also, parameters affecting the reduction of cavitation such as roughness and aeration were investigated. The results showed that there is a possibility of cavitation and damage caused at a distance of 70 to 95 meters from the crest of spillway. The results of the sensitivity analysis showed that the use of a uniform roughness of 2.5 mm and aeration during the chute increases the cavitation index. This roughness moves the cavitation areas to the downstream sections of the spillway. Also, by creating a roughness of 1.5 mm in two end sections 99.75 and 105  meters from  the crest of spillway, the results of the nearest neighbor algorithm (NNA) showed a more critical state than the Flow-3D model. By applying a roughness of 2.5 mm, in the two end sections of 42 and 89.25 meters from the crest of spillway, the NNA showed a more critical state than the Flow-3D model, which means that these areas are more vulnerable to the cavitation phenomenon.

کلیدواژه‌ها [English]

  • Surk Dam
  • Flow3D
  • Cavitation
  • Nearest Neighbor Classification Algorithm
  • Chute spillway
Azhdary Moghaddam, M., & Hasanalipour, A. (2020). Assessing the Reliability of Cavitation on Chute Spillway by Using Form and Monte Carlo Simulation Method. Irrigation Sciences and Engineering, 43(3), 87-99.
Bilušn, I., Predin, A., & Skerget, L. (2007). The extended homogenous cavitation transport model, Journal of Hydraulic Research, 45(1), 81-87.                
Dong, Z., Liu, Z., Wu, Y., & Zhang, D. (2008). An experimental investigation of pressure and cavitation characteristics of high velocity flow over a cylindrical protrusion in the presence and absence of aeration. J. Hydrodyn. 20(1), 60–66.                       
Dular, M., & Coutier-Delgosha, O. (2009). Numerical modelling of cavitation erosion. International journal for numerical methods in Fluids 61(12), 1388-1410.
Falvey, H. T. (1990). Cavitation in chutes and spillways (p. 145). Denver: US Department of the Interior, Bureau of Reclamation.
Ferrer-Troyano, F.J., Aguilar-Ruiz, J.S., & Riquelme, J.C. (2003). Empirical evaluation of the difficulty of finding a good value of k for the nearest neighbor. International Conference on Computational Science, Springer, Berlin, Heidelberg, Vol. 2658, 766-773.
Frizell, K., Renna, F., & Matos, J. (2013). Cavitation Potential of Flow on Stepped Spillways. Journal of Hydraulic Engineering, 139(6), 630-636.
Gabriel, E. (2021). Risk Analysis of Cavitation in Hydraulic Structures. World Journal of Engineering and Technology, 9(3), 614-623.
Ghazi, B., Daneshfaraz, R., & Jeihouni, E. (2019). Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway. Journal of Groundwater Science and Engineering, 7(4): 323-332.
Hamilton, W.S. (1983). Preventing cavitation damage to hydraulic structures. International Water Power and Dam Construction, 35(1), 40-43.
Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning. Springer series, California.
Jalili Ghazizadeh, M., Zarrati, A., & Safavi, K. (2011). Characteristics of Air-Water layers along the nappe over spillway aerators. International Water Power and Dam Construction, 22, 5-24.
Kermani, E.,  Barani, G., & Ghaeini-Hessaroeyeh, M. (2018). Cavitation Damage Prediction on Dam Spillways using Fuzzy-KNN Modeling. Journal of Applied Fluid Mechanics, 11. 323-329.
Khatsuria R .M. (2013). Hydraulics of Spillways and Energy Dissipators, CRC Press.
Luo, Y. Q., Diao, M.J., He, D. M. & Bai, S. X. (2012). Numerical simulation of aeration and cavitation in high dam spillway tunnels. Advances in Water Science, 23(1), 110-116.
Macleod, J. E., Luk, A., & Titterington, D. M., (1987). A re-examination of the distance-weighted k nearest neighbor classification rule. IEEE Transactions on Systems, Man, and Cybernetics, 17(4), 689-696.
Matos, J., Novakoski, C. K., Ferla, R., Marques, M. G., Dai Prá, M., Canellas, A. V. B., & Teixeira, E. D. (2022). Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams. Water, 14(3), 306.
Momber, A. W. (2004). Aggregate liberation from concrete by flow cavitation. International Journal of Mineral Processing, 74, 177–187.
Nie, M. (2001). Cavitation Prevention with Roughened Surface. Journal of Hydraulic Engineering, 127(10), 47–52.
Novakoski, C. K., Ferla, R., Marques, M. G., Prá, M. D., Canellas, A. V. B., & Teixeira, E. D. (2022). Extreme pressures and risk of cavitation in steeply sloping stepped spillways of large dams. Water. Basel. Vol. 14, n. 3 (Jan. 2022), 24 p.
Ramamurthy, A., Ranganath, Y., & Carballada, L. (1984). Pressure and Source Size Effects on Cavitation Damage. Journal of Hydraulic Engineering, 10, 1490-1494.
Samadi-Boroujeni, H., Abbasi, S., Altaee, A., & Fattahi-Nafchi, R. (2020). Numerical and physical modeling of the Effect of roughness height on cavitation index in chute spillways. International Journal of Civil Engineering,18, 539-550, 1-12.
Samani, H. (2015). Design of Hydraulic Structures, SimayeDanesh Publication.
Suguo, S., Guoyu, W., Fufeng, W., & Deming, G. (2011). Experimental study on unsteady cavitation flows around three-dimensional hydrofoil. Chinese Journal of Applied Mechanics, 28(2), 105-110.
Terrier, S., Pfister, M., & Schleiss, AJ. (2022). Performance and Design of a Stepped Spillway Aerator. Water, 14(2):153. https://doi.org/10.3390/w14020153.
Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration.
Wu, X., & Kumar, V. (2009). The top ten algorithms in data mining. CRC press.
Yuan, W., & Schnerr, G.H. (2003). Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation. Journal of Fluids Engineering, 125(6), 963-969.
Zandi, Y. (2005). Cavitation in overflows, Tabriz Islamic Azad University Press.
Zavrel, J. (1997). An empirical re-examination of weighted voting for k-NN. Proceedings of the 7th Belgian-Dutch Conference on Machine Learning, 139-148.
Zhenwei, M. U., Zhiyan, Z., & Tao, Z. (2012). Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Engineering, 28, 808-812.