Abayat; Muhammad, Abayat; Morteza, Abayat; Mostafa. (2022). Estimation of surface soil moisture in agricultural lands using satellite images and remote sensing indicators (case study: Shushtar city). Iran water and soil research. 53 (5) 957-970.
Shah Moradi; Salah, Ghaffarian Malmiri; Hamidreza, Amini; Mohammad. (2021). Derivation of surface soil moisture index (TVDI) using temperature/vegetation scatter diagram and MODIS images. Remote Sensing and Geographical Information System in Natural Resources, 12(1), 38-62.
Liu, Y., Pan, Z., Zhuang, Q., Miralles, D. G., Teuling, A. J., Zhang, T., & Niyogi, D. (2015). Agriculture intensifies soil moisture decline in Northern China. Scientific reports, 5(1), 1-9.
Chen, C. F., Son, N. T., Chang, L. Y., & Chen, C. C. (2011). Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data. Applied Geography, 31(2), 463-475.
Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2), 161-173.
Khazaei, M., Hamzeh, S., Weng, Q. (2020). Generating high spatial and temporal soil moisture data by disaggregation of SMAP product and its assessment in different land covers. GIScience & Remote Sensing, 1(11), 1-11.
Ebrahimi, M., Alavipanah, S.K., Hamzeh, S., Amiraslani, F., Neysani Samany, N., Wigneron, J. (2018).Exploiting the synergy between SMAP and SMOS to improve brightness temperature simulations and soil moisture retrievals in arid regions. JOURNAL OF HYDROLOGY, 557(1), 740-752.
Veysi, Sh., Naseri. A., Hamzeh S. (2020). Relationship Between Field Measurement of Soil Moisture in the Effective Depth of Sugarcane Root Zone and Extracted Indices from Spectral Reflectance of Optical/Thermal Bands of Multispectral Satellite Images. Journal of the Indian Society of Remote Sensing, 48(7), 1035-1044.
Veysi, Sh., Naseri. A., Hamzeh S., Bartholomeus. H. (2017). A satellite based crop water stress index for irrigation scheduling in sugarcane fieldsAGRICULTURAL WATER MANAGEMENT, 189(189), 70-86.
Long, D., & Singh, V. P. (2012). A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sensing of Environment, 121, 370-388.
Zhang, D., Tang, R., Tang, B. H., Wu, H., & Li, Z. L. (2014). A simple method for soil moisture determination from LST–VI feature space using nonlinear interpolation based on thermal infrared remotely sensed data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 638-648.
Sun, H. (2015). Two-stage trapezoid: A new interpretation of the land surface temperature and fractional vegetation coverage space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 336-346.
Burdun, I., Bechtold, M., Sagris, V., Komisarenko, V., De Lannoy, G., & Mander, Ü. (2020). A comparison of three trapezoid models using optical and thermal satellite imagery for water table depth monitoring in Estonian bogs. Remote Sensing, 12(12), 1980.
Mallick, K., Bhattacharya, B. K., & Patel, N. K. (2009). Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology, 149(8), 1327-1342.
Moran, M. S., Peters-Lidard, C. D., Watts, J. M., & McElroy, S. (2004). Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Canadian journal of remote sensing, 30(5), 805-826.
Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1-12.
Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). A mono-window algorithm for land surface temperature estimation from Landsat 8 thermal infrared sensor data: a case study of the Beas River Basin, India. Pertanika J Sci Technol, 26(2), 829-840.
Gillies, R. R., Kustas, W. P., & Humes, K. S. (1997). A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. international journal of remote sensing, 18(15), 3145-3166.
Nemani, R., Pierce, L., Running, S., & Goward, S. (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology and Climatology, 32(3), 548-557.
Sadeghi, M., Babaeian, E., Tuller, M., & Jones, S. B. (2017). The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment, 198, 52-68.
Shafian, S., & Maas, S. J. (2015). Index of soil moisture using raw Landsat image digital count data in Texas high plains. Remote Sensing, 7(3), 2352-2372.
Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., & Jensen, K. H. (2008). Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment, 112(3), 1242-1255.
Goward, S. N., Xue, Y., & Czajkowski, K. P. (2002). Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote sensing of environment, 79(2-3), 225-242.
Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2), 161-173.
Carlson, T. (2007). An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612-1629.
Wigneron, J. P., Olioso, A., Calvet, J. C., & Bertuzzi, P. (1999). Estimating root zone soil moisture from surface soil moisture data and soil‐vegetation‐atmosphere transfer modeling. Water Resources Research, 35(12), 3735-3745.
Wang, W., Huang, D., Wang, X. G., Liu, Y. R., & Zhou, F. (2011). Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrology and Earth System Sciences, 15(5), 1699-1712.
Han, Y., Wang, Y., & Zhao, Y. (2010). Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2509-2515.
Yang, Y., Su, H., Zhang, R., Tian, J., & Li, L. (2015). An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation. Remote sensing of Environment, 168, 54-65.
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89(4), 467-483.