حل عددی نیمرخ طولی سطح آب سد سنگریزه‌ای همگن در شرایط توزیع فشار غیر هیدرواستاتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری سازه‌های آبی، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 استاد گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

3 دانشگاه یاسوج

چکیده

استفاده از سنگریزه‌ها در طراحی سازه‌های آبی نظیر سدهای سنگریزه‌ای، با توجه به ملاحظات زیست محیطی روز به روز رو به افزایش است. مطابق مبانی هیدرویکی، با افزایش شیب سطح آب و بستر و یا ایجاد انحنای قابل ملاحظه در خطوط جریان، توزیع فشار عمودی از حالت هیدرواستاتیک خارج می‌شود. در نتیجه در محیط‌های متخلخل سنگریزه‌ای به دلیل افت شدید انرژی و اختلاف زیاد بین تراز آب بالادست و پایین دست محیط، توزیع فشار از نوع غیر هیدرواستاتیک مورد انتظار است. در این تحقیق با استفاده از رابطۀ نحوه توزیع فشار غیر هیدرواستاتیک، معادله انرژی و با در نظر گرفتن رابطۀ افت اصطکاکی در محیط‌های سنگریزه‌ای، یک رابطه برای تعیین نیمرخ طولی سطح آب در داخل سدهای سنگریزه‌ای ارائه شده است. به منظور بررسی صحت معادله، نتایج حاصل از آزمایش‌های انجام شده در آزمایشگاه هیدرولیک گروه آبیاری و آبادانی دانشکده کشاورزی دانشگاه تهران بر روی یک سد سنگریزه‌ای همگن متشکل از مصالح سنگریزه‌ای رودخانه‌ای گرد گوشه با قطر متوسط 68/1، 27/2، 07/4 و 84/4 سانتی‌متر و در دو طول سد سنگریزه‌ای 50 و 100 سانتی‌متر، مورد استفاده قرار گرفت. حل عددی معادله معرف تغییرات سطح آزاد جریان در داخل سد سنگریزه‌ای و مقایسه نتایج با مقادیر آزمایشگاهی نشان می‌دهد که مدل به خوبی قادر به محاسبه نیمرخ طولی سطح آب سدهای سنگریزه‌ای در دبی‌های کم و زیاد است. تحلیل آماری نتایج نشان می‌دهد که میانگین خطای نسبی حاصل از کاربرد رابطۀ ارائه شده در این تحقیق، برابر 96/3 درصد می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Solution of Free Surface Flow in Homogeneous Rockill Dam under Non-hydrostatic Pressure Distribution Condition

نویسندگان [English]

  • Amir Gord-Noshahri 1
  • Ebrahim Amiri Tokaldany 2
  • Mohammad Sedghi Asl 3
1 PhD of hydraulic structures, Dept. of Irrigataion and Reclamation Engineering, Faculty of Agriculture and Engineering Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Full Professor, Dept. of Irrigataion and Reclamation Engineering, Faculty of Agriculture and Engineering Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 yasooj university
چکیده [English]

Due to environmental considerations, application of rockfill in designing of hydraulic structures, such as rockfill dams is increased. According to hydraulic principles, by increasing water surface and bed slope as well as significant curvature of streamlines, the vertical pressure distribution is deviated from hydrostatic state. Therefore, because of severe energy loss and big difference between upstream and downstream water surface elevation in rockfill porous media, pressure distribution is expected to be non-hydrostatic. In this study, using the distribution of non-hydrostatic pressure, the energy equation and considering the quadratic form of friction loss for non-Darcy flows, the equation representing the longitudinal profile of the water surface inside the rockfill dam is presented. In order to check the accuracy of this equation, experiments on homogeneous rockfill dams consisting of round river materials with average diameters of 1.68, 2.27, 4.07 and 4.84 cm and in two lengths of dams (50 and 100 cm), were performed in the hydraulic laboratory of the department of Irrigation and Reclamation Engineering, University of Tehran. Numerical solution of the equation representing the free surface flow inside the rockfill dam in comparison with the laboratory observations show that the equation is well able to calculate the longitudinal profile of the water surface in rockfill dams at low and high discharges. Statistical analysis of the results shows that the average relative error of estimates is 3.96%.

کلیدواژه‌ها [English]

  • rockfill dam
  • non-Darcy flow
  • longitudinal profile of water surface
  • non-hydrostatic pressure distribution
Ahmed, N. and Sunada, D.K. (1969). Nonlinear flow in porous media. Journal of the Hydraulics Division, 95(6), 1847–1858.
Bari, R. and Hansen, D. (2002). Application of gradually-varied flow algorithms to simulate buried streams. Journal of Hydraulic Research, 40(6), 673-683.
Bazargan, J. and Shoaei, S. M. (2006). Discussion on Application of gradually varied flow algorithms to simulate buried streams.
Bazargan, J. and Shoaei, S. (2010). Analysis of Non-Darcy Flow in Rock Fill Materials Using Gradually Varied Flow Method. Journal of Civil and Surveying Engineering, 44(2),131-139. (In Farsi)
Bear, J. (1972). Dynamics of fluids in porous media, Dover Publications, INC. New York.
chabokpour, J., Amiri Tokaldany, E. (2018). Experimental-Numerical Simulation of Longitudinal Water Surface Profile Through Large Porous Media. Iranian Water Researches Journal, 11(3), 81-90. (In Farsi)
Gord-Noshahri, A., Amiri Tokaldany, E., Sedghi-Asl, M. (2017). Study of non-hydrostatic pressure distribution of free surface flow in a rockfill porous media. Iranian Journal of Soil and Water Research, 48(4), 917-928. (In Farsi)
Gord-Noshahri, A., Amiri Tokaldany, E., Sedghi-Asl, M. (2019). Evaluation and Sensitivity Analysis of Head-Loss Equations of Free Surface Flow through Rockfill Porous Media. Irrigation and Drainage Structures Engineering Research, 20(74), 41-58. (In Farsi)
Hannoura, A.A. and Barends, F.B.J. (1981). Non-Darcy flow; a state of the art. Flow and transport in porous media, 37–51.
Hansen, D. (1992). The behaviour of flow through rockfill dams, Ph. D. dissertation, University of Ottawa (Canada).
Hansen, D., Garga, V.K. and Townsend, D.R. (1995). Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Canadian Geotechnical Journal, 32(2), 223–232.
Hosseini, S.M. (1997). Development of an Unsteady Non-linear Model for Flow Through Coarse Porous Media. Ph. D. dissertation, The University of Guelph.
Li, B., Garga, V.K. and Davies, M.H. (1998). Relationships for non-Darcy flow in rockfill. Journal of hydraulic Engineering, 124(2), 206–212.
Parkin, A.K. (1963). Rockfill dams with inbuilt spillways: I-hydraulic characteristics. Bulletin 6, Water Research Foundation of Australia.
Sedghi-Asl, M., Rahimi, H. and Salehi, R. (2014). Non-Darcy Flow of Water Through a Packed Column Test. Transport in Porous Media, 101(2), 215–227.
Soualmia, A., Jouini, M., Masbernat, L., & Dartus, D. (2015). An analytical model for water profile calculations in free surface flows through rockfills. Journal of Theoretical and Applied Mechanics, 53(1), 209-215.
Stephenson, D. (1979). Rockfill in hydraulic engineering, Elsevier Scientific, New York.
Tayyebi, M. M. and Amiri Tokaldany, E. (2016). Introducing a Relationship to Estimate Hydraulic Gradient in Non-Darcy Turbulent Flow in Porous Media. Journal of Water and Soil, 29(4): 908-918. (In Farsi)
Wilkins, J.K. (1955). The flow of water through rock fill and its application to the design of dams. In 2nd Australia - New Zealand Conference on Soil Mechanics and Foundation Engineering. Institution of Professional Engineers, New Zealand, 10(11), 382-387.