Abdul-Jaleel, C., Manivannan, B. Sankar, A. Kishorekumar R., Gopi, R. and Omasundaram R. (2007). Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids and Surfaces B: Biointerfaces, 60: 7-11.
Alva, AK., Ren, H. and Moore, AD. (2012).Water and nitrogen management effects on biomass accumulation and partitioning in two potato cultivars. American Journal of Plant Sciences 3: 164-170
Anithakumari, AM., Nataraja, KN., Visser RGF. and Van Der Linden. CG. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding. 30: 1413-1429.
Asghari, D. (2010). History of potato. Promotion management and popular participation. Khorasan Agricultural Jihad Organization. (in Persian)
Azizinia, S., Ghannadha, MR., Zali, AA., Yazdi-Samadi B. and Ahmadi A. (2005). An evaluation ofquantitative traits related to drought resistance in syntheticwheat genotypes in stress and non-stressconditions. Iranian Journal of AgriculturalSciences,36:281-293 (In Persian).
Baghani, J. (2009). Planting arrangement and water content in potato cultivation with drip irrigation in Mashhad. Journal of Water and Soil, 23(1): 153-159.
Bahramloo, R. and Naseri, A. (2010). The effect of limited irrigation on water use efficiency and Santa potato cultivar yield. Iranian Journal of Irrigation and Drainage, 4 (1): 90-98. (In Persian).
Basu, PS., Sharma A., and Sukumaran NP. (1998). Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica, 35(1):13-19.
Batool, T., Ali, S., Seleiman, M.F. et al. 2020. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10, 16975 (2020). https://doi.org/10.1038/s41598-020-73489-z
Blum, A. (2006). Use of PEG to induce and control plant water deficit in experimental hydroponics culture. Focus on form: Retrived 2007, from
http://www.spectrapor.com
Boyer, JS. (1982). Plant Productivity and Environment. Science. 218: 443-448.
Brussard, L. and Ferrera-Cenato. R. (1997). Soil Ecology in Sustainable Agricultural Systems. Lewis Pub., USA.
Cabello, R., De Mendiburu, F., Bonierbale, M.,
Monneveux, P., Roca W. and Chujoy. E. (2012). Large scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance.
American Journal Potato Research. 895: 400-410.
Daraei Garmakhani, A., Mirzaei, HO., Maghsoudlou, Y and Kashaninejad, M. (2010). ABSTRACT9 Investigation of the physicochemical properties of three potato varieties of Golestan province and their effects on quality attribute of French fries. JFST Vol. 7, No. 1, Spring 2010
Darwish, TM., Atallah, TW., Hajhasan, S. and Haidar, A. (2006). Nitrogen and water use efficiency of fertigated processing potato. Agricultural water management 85: 95–104.
Demelash, N. (2013). Deficit irrigation scheduling for potato production in North Gondar, Ethiopia. African Journal of Agricultural Research 8(11): 1144-1154
Dokhani, Sh. (1984). The Study of Potato Chips Processing and the Shelf Life from Varieties Cultivated in Isfahan Province. Technical Research Report at Isfahan University of Technology. No. 101. In Persian. English Abstract
Donnely, DJ., Coleman WK and Coleman. S.E. (2003). Potato micrituber production and performance: a review. American Journal of Potato Research. 80: 103-115.
Doorenbos, J. and Pruitt, WO. (1977) Guidelines for predicting cropwater requirements, FAO Irrigation and Drainage Paper no. 24.FAO, Rome, 144 pp., 1977
Duangpaeng, A., Phetcharat1, P., Chanthapho1, S., Boonkantong N and Okuda, N. (2012). The study and development of endophytic bacteria for enhancing organic rice growth. Procedia Engineering. 32: 172-176.
Ebrahimi Pak, N. (2011). The Impact of deficit irrigation (reduced irrigation water) on the quantity and quality of potato crop in Shahrekord. Final Report No. 1695. Karaj Soil and Water Institute, Iran, p. 56.
Etesami, H., Alikhani, HA. and Hosseini, HM (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. Methods. 2: 72-78.
Fernandez, GCJ. (1992). Effective selection criteria for assessing plant stress tolerance. Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crop in temperature and water stress. Taiwan. pp 257-270.
Fischer, RA., and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield response. Australean Journal of Agriculture Research. 29: 897-912.
Gopal, J., and Iwama. K (2007). In vitro screening of potato against water stress mediated through Sorbitol and polyethylene glycol. Plant Cell Report. 26: 693-700.
Gorji, MA., K. Mátyás, Z.S. Dublecz1, K. Decsi1, I. Cernák, K. Decsi, J. Taller, B. Hoffmann and Z. Polgar. (2012). In vitro osmotic stress tolerance in potato and identification of major QTLs. American Potato Research Journal.
Graham, SO., Green NE. and Hendrix, JW (1976). The influence of vesicular- arbuscular mycorrhizal fungi on growth and tuberization of potatoes. Mycologia. 68: 925-929.
Gupta, A., Rico-Medina, A. & Caño-Delgado, A. 2020. The physiology of plant responses to drought. Science 368, 266–269 (2020).
Hassan, AA., Sarkar, AA., Ali M.H. and Karim. NN., (2002). Effect of deficit irrigation at different growth stages on the yield of potato. Pakestan Journal Biology Sciences., 5: 128-134.
Hassanpanah, D. and Hassanabadi. H (2011). Evaluation of quantitative and qualitative characteristics of promising potato clones in Ardabil region, Iran. Modern Science of Sustainable Agriculture Journal, 7: 37-48 (In Persian).
Hassanpanah, D., Gurbanov, E., Gadimov A. and Shahriari. R. (2008). Determination of yield stability in advanced potato cultivars as affected by water deficit and potassium humate in Ardabil region, Iran. Pakistan Journal Biology Science. 15: 1354-1359.
Heidari Sareban, B. (2016). Investigating water deficit tolerance in seedlings of potato cultivars treated with polyethylene glycol and plant growth-promoting bacteria under in vitro conditions. Master’s thesis in Agriculture, Faculty of Agriculture, Islamic Azad University, Ardabil Branch. 110 pages. (In Persian).
Iqbal, MM., Shah, SM. Ohammad W. and Awaz. H. (1999). Field response of potato subjected to water stress at different growth stages. In: C. Kirda, P. Moutonnet, C. Hera and D.R. Nielsen (eds), Crop yield response to deficit irrigation. Kluwer Academic Publisher, The Netherlands. pp 213-223.
Irna, A. and G. Mauromicale. (2006). Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment. Agricultural Water Management. 82: 193-209.
Islam, M.S., Hasan, M.S., Hasan, M.N. et al. 2021. Genome-wide identification, evolution, and transcript profiling of Aldehyde dehydrogenase superfamily in potato during development stages and stress conditions. Sci Rep 11, 18284 (2021).
https://doi.org/10.1038/s41598-021-97691-9
Ja’fari, F. (2015). The impact of growth-promoting bacteria on yield and yield components of Satina potato cultivar. First Iranian Scientific-Research Conference on Biology and Horticulture Science, Tehran, Scientific Association of Fundamental Science and Technology Development and Promotion. (In Persian).
Jafarian, S. (2000). Effect of pre heating and use of some of hydrocolloids in reduction oil uptake and quality of potato French fries. A thesis Submitted to Msc degree of food science and technology, Isfahan University of technology, 120p. (In Persian).
Khalil Zadeh, GHR., and Karbalai Khiyav. H. (2002). Effects of drought and heat stress onadvanced lines of durum wheat. 7th Congress of Agronomy and Plant Breeding of Iran.Agricultural Education Publishing. P:563-564. (In Persian).
Khandan, A., Mobser, S., Moslem-khani, K. and Hassanabadi, H. (2011). National guidelines for agronomic value determination tests of potato cultivars. Research Institute of Registration and Certification of Seeds and Seedlings. 35 pages. (In Persian).
Kumar D., Singh B.P., and Kumar P. (2004). An overview of the factors affecting sugar content of potatoes. Annals of Applied Biology, 145: 247-256.
Lefe, I., Legay, S. & Lamoureux, D. 2017. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot. 61, 2327–2343 (2017).
Li, Q., Qin, Y., Hu, X. et al. 2020. Transcriptome analysis uncovers the gene expression profile of salt-stressed potato (Solanum tuberosum L.). Sci Rep 10, 5411 (2020). https://doi.org/10.1038/s41598-020-62057-0
Lifshitz R., Klopper JW., Kozlowsky M., Simonson C., Carlson J., Tipping E., and Zaleska M. (1989). Growth promotion of Canola (rape seed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Canadian Journal of Microbiology, 33: 390-395.
Lisinska, G., and Leszczynski, W. (1989). Potato science and technology, Elsevier science publishers. pp, 166-227
Lonergan JF., and Webb MJ. (1993). Interaction between zinc and other nutrients affecting the growth of plants. In, Robson, A. D. (ed) Zinc in Soils and Plants, kluwer Academic Publishers, Dordrecht. pp. 119-134.
Lynch, DR., Oroud, N., Kozub, GC., and Farries. BC (1995). The effect of moisture stress at three growth stages on the yield components of yield and processing quality of eight potato cultivars. American Potato Journal. 72: 375-386.
Moqaddaszadeh, M., Asghari Zakariya, R., Hassanpanah, D. and Zare’, N. (2018). Evaluation of tuber yield stability of potato (Solanum tuberosum) genotypes using nonparametric methods. Journal of Crop Breeding, 10(28): 50-63.
Motalebifard R., Najafi N., Oustan S., Nyshabouri MR., and Valizadeh M. (2013). The combined effects of phosphorus and zinc on evapotranspiration, leaf water potential, water use efficiency and tuber attributes of potato under water deficit conditions. Scientia Horticulturae, 162: 31-38.
Naderi Darbagshahi, MR., Noormohamadim GH,, Majidi, A., Darvish, F., Shirani Rad, AH and Madani, H. (2004). Effect of drought stress and plant density on the characteristics in line planting safflower in Isfahan. Seed and Plant Production Journal, 20: 296-281. (In Persian).
Naeim, A. and Atrashi, M. (2014). Investigating the effect of plant growth-promoting bacteria and fungi on increased yield and some growth parameters of three potato (Solanum tuberosum) cultivars. Journal of Crop Production and Processing, 4(13): 37-48.
Niemira, BA., Safir, GR., Hammerschmidt R. and George, WB. (1995). Production of prenuclear minitubers of potato with peat-based arbuscular mycorrhizal fungal inoculum. Agronomy Journal 87:942–946.
Pais, R., Ruano, L., Moreira, C., Carvalho, O. P. & Barros, H. Prevalence and incidence of cognitive impairment in an elder Portuguese population (65–85 years old). BMC Geriatr. 20, 470 (2020).
Palta, JA., Chen, X., Milroy, SP., Rebetzke, GJ., Dreccer, MF and Watt, M. (2011). Large root systems: Are they useful in adapting wheat to dry environments? Functional Plant Biology. 38: 347-354.
Poudel, S., Vennam, R.R., Shrestha, A. et al. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Sci Rep 13, 1277 (2023). https://doi.org/10.1038/s41598-023-28354-0
Rezaei, A. and Soltani, A. (2004). Potato cultivation (translation). Jahad Daneshgahi Publications. Ferdowsi University of Mashhad. 173 pages. (In Persian).
Sadegh-Zadeh Ahari, D. (2006). Evaluation of drought tolerance in durum wheat genotypes promising. Crop Science, 8(1): 44-30. (In Persian).
Sadeghzadeh-Ahari, D. (2006). Evaluation for tolerance to drought stress in dryland promising durum wheat genotype. Crop Science,8(1), 30-45.
Schittenhelma, S., Sourell, H., and Lopmeierc, FJ. (2006). Drought resistance of potato cultivars with contrasting canopy architecture. European Journal Agronomy. 24: 193-202.
Shaalan, MN. (2005). Influence of biofertilizers and chicken manure on growth, yield and seeds quality of (Nigella sativa L.) plants. Egyptian Journal of Agricultural Research 83:811-828.
Shafaqi Asl, SK. and Maloufi, N. (2015). The amount of dry matter and starch in different potato cultivars. 23rd National Congress of Iranian Food Science and Industry, Quchan, Islamic Azad University, Quchan Branch. (In Persian).
Shock, CC, and Feibert, EBG. (2002). Deficit irrigation on potato. In deficit irrigation practices. FAO, Rome. pp 47-56.
Sobhani, A. and Hamidi, H. (2014). Evaluation of yield and growth indices of potato under different levels of water deficit stress. Iranian Journal of Agricultural Research, 12(2): 283-295. (In Persian).
Vessey, JK. (2003) Plant Growth Promoting Rhizobacteria as Biofertilizers. Plant and Soil, 255, 571-586.
Vosátka, M. and Gryndler. M. (1999). Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Applied Soil Ecology 11:245–251.
Wang F., Kang Y., Liu S., and Hou X. (2007). Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural Water Management. 88: 34–4 2.
Wil, VL. (2005). Process innovation and quality aspects of French fries. PhD thesis Wageningen University, The Netherlands, 2005 – with summary in Dutch
Wu, SC., Cao, ZH., Li, ZG and Cheung, KC (2005). Effect of biofertilizers containing N-fixer, Panda K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125: 155-166.
Ziya Chehreh, M., Tobeh, A., Hassanpanah, D. and Jahani, Y. (2015). Investigation and selection of potato cultivars tolerant to limited irrigation stress to prevent tuber yield reduction from the economic range based on water deficit tolerance and susceptibility indices under farm conditions. Second National Conference on Conservation of Natural Resources and Environment, Ardabil, University of Mohaqqeq ArdabiliA.O.A.C. 1990. Official methods of analysis association of analytical chemists. Washington D.C. USA. pp: 777. (In Persian)