توزیع پذیرفتاری مغناطیسی و شاخص‌های هوادیدگی در سطوح مختلف ژئومورفیک در برخی خاکهای منطقه چالدران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری دانشگاه تبریز و عضو هیات علمی پیام نور دانشکده کشاورزی، گروه خاکشناسی، تهران ، ایران.

2 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

3 استادیار گروه فضای سبز، دانشکده کشاورزی، مرکز آموزش عالی شهید باکری میاندوآب، دانشگاه ارومیه.

چکیده

پذیرفتاری مغناطیسی (χ) روشی سریع، غیرتخریبی و ساده برای تعیین خصوصیات خاک و توصیف فرآیندهای تشکیل خاک است که در سطوح ژئومورفیک مختلف، به‌منظور بررسی اثرات فاکتورهای تشکیل خاک (پستی و بلندی، مواد مادری و ...) مورد مطالعه قرار می‌گیرد. این پژوهش با هدف بررسی اثرات اشکال مختلف آهن، زهکشی، کاربری اراضی و فعالیتهای انسانی (کشاورزی) بر تغییرات پذیرفتاری مغناطیسی خاک و بررسی شاخص‌های هوادیدگی CIW، CIA  و CPA  در واحدهای ژئومورفیک مختلف در سال 1400 در منطقه مطالعاتی چالدران در شمال غربی ایران و در استان آذربایجان غربی انجام گردید. بدین منظور 9 خاکرخ شاهد در پنج واحد ژئومورفیک غالب در منطقه ازجمله دشت دامنهای، پدیمنت پوشیده، مخروطه افکنه، دشت و دشت سیلابی حفر و ارزیابی گردید. پس از تشریح و نمونهبرداری از افق‌های ژنتیکی خاک‌رخهای حفرشده، خصوصیات فیزیکوشیمیایی نمونه‌ها به‌همراه ویژگی‌های مغناطیسی آنها و شاخص‌های هوادیدگی CIW، CIA و CPA اندازهگیری شد. دامنه پذیرفتاری مغناطیسی خاک‌های منطقه که تحت تاثیر رسوبگذاری، خاکسازی ، هوادیدگی و کشت و کار قرار داشت، ازkg−1  3m 10-8 × 90/42 تا 20/1053 متغیر بود. همچنین، میانگین مقدار χlf  خاک‌رخهای مورد مطالعه در ژئوفرمهای مختلف بهصورت دشت سیلابی > مخروط افکنه > پدیمنت پوشیده > دشت > دشت دامنه‌ای مشاهده گردید. با وجود اینکه مقادیر پذیرفتاری مغناطیسی وابسته به فرکانس نمونه‌های خاک مورد بررسی بین 07/0 تا 50/3 درصد متغیر بود؛ اما در بیشتر افقها مقدار χfd  کمتر از 2 درصد اندازهگیری گردید. این نتیجه نشان‌دهنده حضور ذرات درشت چندحوزهای در منطقه است که از طریق مواد مادری اضافه شدهاند. همچنین نتایج مقادیر شاخصهای هوادیدگی CIA، CIWو CPA و همچنین منحنی A-CN-K و ترکیب شیمیایی اکسیدهای عناصر مورد مطالعه نشان دهنده مرحله هوادیدگی ضعیف تا متوسط در منطقه است. بر اساس نتایج بهدست آمده، آبشویی مواد دیامغناطیس به لایههای زیرین خاک، انتقال کانی‌های فری‌مغناطیس توسط آب و فعالیت‌های کشاورزی، منجر به تغییرات روند χlf با عمق شده است. همچنین نتایج نشان داد که شرایط اکوییک به علت زهکشی ضعیف در خاکهای مورد مطالعه موجب کاهش پذیرفتاری و میزان Fed  شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating magnetic susceptibility distribution and weathering indices under different geomorphic surfaces chaldoran area

نویسندگان [English]

  • Ashraf malekian 1
  • Ali asghar jafarazdeh 2
  • Shahin oustan 2
  • Moslem servati 3
1 PhD graduated in Soil Science , University of Tabriz,and Asistant Professor, Payame Noor University, Tehran,Iran.
2 Professor of Soil Science and engineering department, University of Tabriz,Tabriz,Iran
3 Assistant Professor of the Department of Green Space, Faculty of Agriculture, shahid Bakeri High education Center of Miandoab, Urmia University
چکیده [English]

Magnetic susceptibility (χ) is a fast, non-destructive and simple method for determining soil properties and describing soil formation processes, which has been studied at different geomorphic levels, in order to investigate the effects of soil formation factors (elevation, elevation, and parent materials). This research aims to evaluate the changes of different forms of iron, drainage, land use and human activities (agriculture) on changes in soil magnetic receptivity and investigate CIW, CIA and CPA aeration indices in different geomorphic units in the year 2021 in Chaldaran study area in the northwest Iran and West Azarbaijan province. For this purpose, 9 test soils were excavated and evaluated in five dominant geomorphic units in the region, such as slope plain, covered pediment, alluvial cone, plain and flood plain. After dissection and sampling from the genetic horizons of the excavated rocks and transporting them to the laboratory, the physicochemical properties of the samples were measured along with their magnetic properties and aeration indices of CIW, CIA and CPA. The results showed that the range of magnetic receptivity of the soils of the region varied from 42.90 x 10-8 to 1053.20 m3 kg-1. Also, the average value of χlf of the studied soils in different geoforms was observed as flood plain > alluvial cone > covered pediment > plain > slope plain. Although the values of magnetic receptivity depending on the frequency of the examined soil samples were variable between 0.07% and 3.50%; But in most horizons, the value of χfd was less than 2%. This result indicates the presence of multi-domain coarse particles in the region that were added through parent material. Also, the results of CIA, CIW and CPA aeration indices indicate the stage of weak to moderate aeration in the region. Further, it was observed that the leaching of diamagnetic materials to the lower soil layers, ferrimagnetic minerals transferred by water and agricultural activities, has led to changes in the χlf trend with depth. Also, according to the A-CN-K curve and the chemical composition of the oxides of the studied elements, a moderate aeration process was observed in the region. On the other hand, the studied region is affected by water sediments and agricultural activities; It seems that carrying out the processes of sedimentation, soil formation, aeration and cultivation in this area has changed the chemical composition of the soils. Finally, it can be concluded that the equitic conditions caused a decrease in the acceptability and amount of Fed due to poor drainage in the studied soils.

کلیدواژه‌ها [English]

  • Iron
  • Geomorphic surfaces
  • Pedogenesis Iron
  • Drainage
  • Land Use. Alfisols

Extended Abstract

Introduction

There are various weathering indices consisting of the Chemical index of weathering (CIW), Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA). Typically, the value of these indicators increases by increasing weathering intensity. Magnetic susceptibility is a property that can be measured in a short time and according to various studies has a good relationship with some physical, chemical, evolutionary properties, drainage conditions, weathering and in some cases land use type. Therefore, in the present study, different forms of iron, magnetic parameters and weathering indices in different geomorphic surfaces of Chaldoran have been studied. The objectives of this study include (1) investigating changes in various forms of iron and magnetic susceptibility of soil; (2) the effect of drainage, land use and human (agricultural) activities on changes in soil magnetic susceptibility; 3) Investigation of weathering indices of CIW, CIA and CPA at different geomorphic surfaces.

 

Material and Methods

Based on the study of the predominant geomorphic surfaces of the region, including the piedmont plain (pedons 5 and 7), mantled pediment (pedon 6), alluvial fan (pedon 2), plains (pedons 1.3,4,9), flood plain (pedon 8) in figure 1 and a visual interpretation of Google Earth satellite images, topographic maps and field visits, the initial geomorphic surfaces of the sampling areas were determined. A total of 60 soil profiles were dug by supervised random sampling in different soil series, taking into account the entire study area. Also selected according to field studies and laboratory results, important and effective land characteristics, number of indicator pods. All excavated excavations were described according to the Soil Survey Staff (1993) and classified according to the Comprehensive Soil Classification of the United States (Soil Taxonomy, 1999) and the Keys to Soil Taxonomy (2010). Among the excavated Pedons, nine representative Pedons were chosen that mostly composed of quaternary sediments in terms of geology of the study area. In some parts, it could also be seen as veins of Limestone, Gabbro, Diorite and Basalt. Afterwards, soils were classified according to the soil taxonomy 2014 system. Sampling was performed in each control soil from top to bottom horizons and magnetic susceptibility was measured in all horizons. The soil samples were then dried at room temperature and passed through a 2 mm sieve after crushing. After that, the Soil Organic Carbon (SOC) using the Walkley-Black wet oxidation method, soil texture by pipette method, calcium carbonate equivalent by neutralization method , EC and pH of saturated extracts were measured using EC meter and pH meter, respectively. Besides, the amount of gypsum was measured using acetone method. Free iron (Fed) using dithionate bicarbonate citrate, non-crystalline iron (Feo) using ammonium acid oxalate, and total iron using nitric-perchloric acid (1:3) were extracted. The concentration of extracted iron was determined by utilizing the atomic absorption of Perkin Elmer AAnalyst 800. Furthermore, the magnetic susceptibility of soil (χ) at low frequencies 0.46 kHz, high frequency 4.6 kHz, (χ) was measured using MS2B Bartington magnetic susceptibility system.

 

Results and Discussion

The range of χlf of soils ranged from 42.90×10-8m3kg-1 (Horizon Ap, Pedon 1) to 1053.20×10-8 m3 kg-1 (Horizon C1, Pedon 1). The average χlf in the geomorphic units of the area is obtained in the form of flood plain> alluvial fan> mantled pediment> plain> piedmont plain. The χfd values of the studied soil samples were in the range of 0.07- 3.50%.

The range of changes in total iron is from 12.05 g kg-1 (Horizon C2, Pedon 1) to 42.60 kg-1 (Horizon Bss2, Pedon 9). Also, the mean of total iron in the studied Pedons is in the form of mantled pediment> alluvial fan> flood plain> piedmont plain = plain, respectively. Moreover, the mean Fed values in the studied geomorphic units were in the form of mantled pediment> plain> piedmont plain> flood plain> alluvial fan, respectively. The amount of Feo in the studied soils varied from 0.09 gkg-1 (Horizon C2, Pedon 1) to 0.75 gkg-1 (Horizon BC, Pedon 4). Furthermore, the average value of Feo in geomorphic units is flood plain> piedmont plain> alluvial fan> mantled pediment> plain, respectively. The range of changes in the Feo/Fed ratio in the studied geomorphic units was from 0.08 to 0.01. In addition, the range of changes in χlf value varied from 42.90×10-8m3 kg-1 on the Horizon Ap to 1053.20×10-8m3 kg-1 on the Horizon C1.

The range of changes in CIA index was from 60.82 (horizon C2, pedon 1) to 78.77 (horizon Bg, pedon 3). Moreover, the highest and lowest mean of CIA index were observed in flood plain and mantled pediment geoforms, respectively. Therefore, all horizons of excavated Pedon in the area have a CIA between 50 and 80, indicating that the soils of the area are in the phase of weak to moderate weathering. Another meteorological index used is the CPA index, which is somewhat complementary to the CIA index. The highest and lowest mean values of CPA index were observed in flood plain and mantled pediment geomorphic units, respectively. Meanwhile, the value of CIW index varied from 65 (horizon C2, pedon 1) to 87.20 (horizon Bg pedon 3).

 

Conclusion

The aim of this study was to evaluate the effects of soil formation factors on the amount and vertical distribution of magnetic susceptibility. Nine control excavations were excavated in five dominant geomorphic units of the region, including slope plain, covered pediment, alluvial fan, plain, flood plain in West Azerbaijan province located in IranThe obtained results of this paper confirmed that the parent materials, topography along with drainage, and land use status factors, had been known as the most important factors affecting the formation, evolution, and magnetic susceptibility of different geoforms in Chaldoran area. In most of the studied Pedons, the amount of magnetic susceptibility χ increased by increasing depth, whereas in some Pedons, the amount of χ was maximal due to the transfer of fine ferrimagnetic particles with clay particles in Horizon B. The soil drainage conditions and moisture regime had also greatly influenced both the magnetic susceptibility and Fed distribution. Overall, the aquic conditions in the studied soils reduced the susceptibility of the Fed rate. Meanwhile, the ferrimagnetic particles forming the soils of the area were of the type of multi-zone coarse particles (μm >110). Furthermore, the CIA, CIW and CPA weathering indices revealed a weak to moderate weathering phase in the area. Nevertheless, to better understand the magnetic properties of soils under different geoforms, it is better to explore the relationship of other magnetic parameters in the area.

Alamdari, P. Jafarzadeh, A. A. Oustan, S. and Toomanian, N. (2010). Iron oxide forms and distribution in a transect of Dasht-e-Tabriz soils, northwest Iran. Journal of Food, Agriculture and Environment, 8(3&4), 976-979.
Ayoubi, S. and Mirsaidi, A. (2019). Magnetic susceptibility of Entisols and Aridisols great groups in southeastern Iran. Geoderma Regional, 16, p.e00202
Azadi, N. and Raiesi, F. (2021). Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar, 3(4), pp.485-498.
Azadi, A., Shakeri, S., & Zareian, Gh. (2021). The effect of landform units on the origin and distribution of extractable forms of iron oxide in some calcareous soils. The 4th national conference of farm water management., Karaj, Iran.
Azadi, A., Baghernejad, M., Gholami, A., & Shakeri, S. (2021). Forms and distribution pattern of soil Fe (Iron) and Mn (Manganese) oxides due to long-term rice cultivation in fars Province Southern Iran. Communications in Soil Science and Plant Analysis, 52(16), 1894-1911.
Bao, J. Song, C. Yang, Y. Fang, X. Meng, Q. Feng, Y. and He, P. (2019). Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic.  J. Asian. Earth. Sci. 170, 155-165.‏ https://doi.org/10.1016/j.jseaes.2018.10.018.
Blume, H. P. and Schwertmann, U.(1969). Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Sci. Soco. Am. J. 33(3), 438-444.‏ doi:10.2136/sssaj1969.03615995003300030030x
Blundell, A. Dearing, J.A. Boyle, J.F. and Hannam, J.A. (2009). Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth Sci. Rev. 95 (3), 158–188.
Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E. and Kienast-Brown, S. eds., 2010. Digital soil mapping: Bridging research, environmental application, and operation. Springer Science & Business Media.
Bridge, J. and Demicco, R., 2008. Earth surface processes, landforms and sediment deposits. Earth Surface Processes.
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N.  and Markovič, S.B. (2011). An evaluation 554 of geochemical weathering indices in loess-paleosol studies. Quaternary International 555 240, 12–21.
De Jong, E. Kozak, L.M. Rostad, H.P.W. (2000). Effects of parent material and climate on the magnetic susceptibibility of soils in different slop positions in Saskatchewan, Canada. Catena 40 (3), 291-305.
Diaz, M. C. and Torrent, J. (1989). Mineralogy of iron oxides in two soil chronosequences of central Spain. Catena. 16, 291–299. https://doi.org/10.1016/0341-8162(89)90015-5.
Dearing, J. (1999). Environmental magnetic susceptibility: Using the bartington MS2 system. Chi Publishing, Keniloworth.
Esfandiarpour-Boroujeni, I., Bandehelahi, F., Mosleh, Z., Karimi, A., Farpoor, M. H., & Fattahi, M. (2022). Evaluating the Effects of Sedimentary Cycles (Aeolian and Fluvial) on Chemical Weathering Indices in Rafsanjan Region, Southeast of Iran. Desert, 27(1), 115-139.921-924.
Franz, C., Makeschin, F., Roig, H., Schubert, M., Weiß, H. and Lorz, C. (2012). Sediment characteristics and sedimentations rates of a small river in Western Central Brazil. Environmental Earth Sciences, 65(5), pp.1601-1611.
Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis. In: Klute, I.I., Ed., Methods of Soil Analysis, Soil Science Society of America, Madison, 383-412.
Goydaragh, M.G., Taghizadeh-Mehrjardi, R., Golchin, A., Jafarzadeh, A.A. and Lado, M. (2021). Predicting weathering indices in soils using FTIR spectra and random forest models. Catena, 204, p.105437.
Gus-Stolarczyk, M., Drewnik, M., Szymański, W. and Stolarczyk, M. (2022). Impact of podzolization on lamellae transformation in sandy soils in a temperate climate–A case study from southern Poland. Geoderma, 406, p.115535.
Harnois, L. (1988). The CIW, Index: A New Chemical Index of Weathering. Sedimentary Geology, 55, 319-322. https://doi.org/10.1016/0037-0738(88)90137-6.
Honda, M. and Shimizu, H. (1998). Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands. Sedimentology, 45(6), 1125-1143
Hong, C.Y., Wu, C.C., Chiu, Y.C., Yang, S.Y., Horng, H.E. and Yang, H.C. (2006). Magnetic susceptibility reduction method for magnetically labeled immunoassay. Applied Physics Letters, 88(21), p.212512.
Hseu, Z. Y. Chen, Z. S. Tsai, C. C. Tsui, C. C. Cheng, S. F. Liu, C. L. and Lin, H. T. (2002). Digestion methods for total heavy metals in sediments and soils. Water, air, and soil pollut141(1-4), 189-205.‏ https://doi.org/10.1023/A:1021302405128
Huang, L. Jia, X. Shao, M. A. Chen, L. Han, G. and Zhang, G. (2018). Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay. Sci. Rep8(1), 444.‏ doi:10.1038/s41598-017-18963-x.
Hu, M. Y., Yan, H. Y., Chung, W.-S., Shiao, J.-C. and Hwang, P. P. (2009). Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 153(3), 278–283. https://doi.org/10.1016/j.cbpa.2009.02.040.
Li, M. Y., Zhang, X. T., Liu, H. Y., & Wei, S. Q. (2022). Effects of Water Management on the Transformation of Iron Oxide Forms in Paddy Soils and Its Coupling with Changes in Cadmium Activity. Huan Jing ke Xue= Huanjing Kexue, 43(8), 4301-4312.
Liu, R., Ma, T., Qiu, W., Du, Y. and Liu, Y. (2020). Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance. Science of the Total Environment, 701, p.134776.
Liu, L. Zhang, Z. Zhang, K. Liu, H. and Fu, S. (2018). Magnetic susceptibility characteristics of surface soils in the Xilingele grassland and their implication for soil redistribution in wind-dominated landscapes: A preliminary study. Catena, 163, 33-41.
Lu, S.G. Xue, Q.F. Zhu, L. Yu, J.Y. (2008). Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena 73 (1), 23–33.
Lu, S. (2000). Lithological factors affecting magnetic susceptibility of subtropical soils, Zhejiang Province, China. Catena 40 (4), 359–373.
Lu, S.G. Chen, D.J. Wang, S.Y. and Liu, Y.D. (2012a). Rock magnetism investigation of highly magnetic soil developed on calcareous rock in Yun-Gui Plateau, China: evidence for pedogenic magnetic minerals. J. Appl. Geophys. 77, 39–50.
Layzell, A. L. and Eppes, M. C. (2013). Holocene pedogenesis in fluvial deposits of the Conejos River valley, southern Colorado. The Compass: Earth Science Journal of Sigma Gamma Epsilon, 84(4), 4.‏
Maher, B. A. (1988). Magnetic properties of some synthetic sub-micron magnetites. Geophys. Inter. 94(1), 83-96
Mahu, E. Asiedu, D. K. Nyarko, E. Hulme, S. Coale, K. H. and Anani, C. Y. (2018). Provenance, paleo-weathering and-redox signatures of estuarine sediments from Ghana, Gulf of Guinea. Quat. Int. 493, 176-186. https://doi.org/10.1016/j.quaint.2018.06.005.
Malick, B. M. L. and Ishiga, H. (2016). Geochemical classification and determination of maturity source weathering in beach sands of eastern San’in Coast, Tango Peninsula, and Wakasa Bay, Japan. Earth. Sci. Res. 5(1), 44-56.
Maxbauer, D. P. Feinberg, J. M. and Fox, D. L. (2016). Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges. Earth Scie Rev155, 28-48. https://doi.org/10.1016/j.earscirev.2016.01.014.
Maxbauer, D. P. Feinberg, J. M. Fox, D. L. and Nater, E. A. (2017). Response of pedogenic magnetite to changing vegetation in soils developed under uniform climate, topography, and parent material. Sci. Re. 7(1), 17575. https://doi.org/10.1038/s41598-017-17722-2
Mehra, O.P. and Jackson, M.L. (1958). Iron oxide removal from soils and clays by a dithionitecitrate system buffered with sodium bicarbonate. Clays and Clays Miner. 7. 317–327. doi:10.1346/CCMN.1958.0070122.
Mullins, C. E. (1977). Magnetic susceptibility of the soil and its signifcance in soil science–a review. Eur. J. Soil Sci. 28, 223–246.  https://doi.org/10.1111/j.1365-2389.1977.tb02232.x
Nelson, D.W. and Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis. Agron. Monger. vol. 9. ASA and SSSA, Madison, WI, pp. 539–577.
Nesbitt, H. W. and Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta. 48, 1523–1534.
Ohta, T., and Arai H. (2007). Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical Geology, 240: 280–297. 67.
Owliaie, H.R. and Najafi Ghiri M. (2014). Effect of topography and land use on the soil magnetic susceptibility, Case study: Madvan Plain, Kohgilouye Province. Journal of Soil and Water Science, 40: 159-169. in Persian with English abstract.
Owliaie, H.R. Heck R.J. and Abtahi A. (2006b). Distribution of magnetic susceptibility in Kohgilouye Boyerahmad soils, southwestern Iran. Proceeding of 18th World Congress of Soil Science. Philadelphia, Pennsylvania. USA.
Quijano, L. Gaspar, L. López-Vicente, M. Chaparr, A.E. Machín, J. and Navas A. (2011). Soil magnetic susceptibility and surface topographic characteristics in cultivated soils. Latinmag Letters, Volume 1, Special Issue, D10, 1-6. Proceedings Tandil, Argentina.
Rudnick, R. L. and Gao, S. (2003). Composition of the Continental Crust. In R. L. Rudnick, H. D. Holland, and K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 1–64). Elsevier–Pergamon, Oxford.
Sarmast, M. Farpoor, M. H. and Boroujeni, I. E. (2017). Magnetic susceptibility of soils along a lithotoposequence in southeast Iran. Catena156, 252-262.‏ https://doi.org/10.1016/j.catena.2017.04.019.
Schoeneberger P.J., Wysocki D.A., Benham E.C., and Broderson, W.D. (2006). Field Book for Describing and Sampling Soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln, NE, 314p.
Schwertmann, U. (1973). Use of oxalate for Fe extraction from soils. Can. J. Soil. Sci. 53 (2), 244–246.
Shu, P. Li, B. Wang, H. Qiu, Y. Niu, D. Dianzhang, D. and An, Z. (2018). Geochemical characteristics of surface dune sand in the Mu Us Desert, Inner Mongolia, and implications for reconstructing the paleoenvironment. Quat. Int, 479, 106-116.‏ https://doi.org/10.1016/j.quaint.2017.05.053.
Soil Survey Division Staff. (1993). Soil Survey Manual. Soil Conservation Service. US Department of Agriculture Handbook 18.
Soil Survey Staff, USDA. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agriculture Handbook, Second Edition, No. 436. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf.
Soil Survey Staff. (2014). Keys to Soil Taxonomy (12nd ed.). United States Department of Agriculture. NRCS.
Sokolowska, Z., Alekseev, A., Skic, K. and Brzezinska, M. (2016). Impact of wastewater application on magnetic susceptibility in Terric Histosol soil. International Agrophysics, 30(1).
Su, N. Yang, S. Y. Wang, X. D. Bi, L. and Yang, C. F. (2015). Magnetic parameters indicate the intensity of chemical weathering developed on igneous rocks in China. Catena133, 328-341.‏
https://doi.org/10.1016/j.catena.2015.06.003
Thompson R. and Oldfield F. (1986). Environmental Magnetism. Allen and Unwin, London. 227p.
Torrent, J. Schwertmann, U. and Schulze, D. G. (1980). Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma. 23, 191–208. https://doi.org/10.1016/0016-7061(80)90002-6.
Tunçay, T., Dengiz, O., Bayramin, I., Kilic, S. and Baskan, O. (2019). Chemical weathering indices applied to soils developed on old lake sediments in a semi-arid region of Turkey. Eurasian Journal of Soil Science, 8(1), 60-72.
USDA. (2014). Keys to soil taxonomy. Soil Survey Staff.
Vodyanitskii, Y. N. (2010). Iron hydroxides in soils: A review of publications Eur. J. Soil. Sci.  43, 1244–1254. https://doi.org/10.1134/S1064229310110074
Walkey, A. and Black, I. A. (1934). An examination of Degtiareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science Society of American Journal, 79: 459-465.
Xue, B., Huang, L., Li, X., Lu, J., Gao, R., Kamran, M., Fahad, S. (2022). Effect of Clay Mineralogy and Soil Organic Carbon in Aggregates under Straw Incorporation. Agronomy, 12(2), 534.
Zhao, Y. Yang, S. Liu, J. T. Fan, D. Yang, R. J. Bi, L. and Chang, Y. P. (2017). Reconstruction of silicate weathering intensity and paleoenvironmental change during the late Quaternary in the Zhuoshui River catchment in Taiwan. Quat. Int. 452, 43-53.‏ http://dx.doi.org/10.1016/j.quaint.2016.12.013.
Zhang, Y. (2019). Spatial variability of soil magnetic susceptibility under different scales: a case study of Xiangtan. In Journal of Physics: Conference Series (Vol. 1176, No. 4, p. 042025). IOP Publishing.‏ doi:10.1088/1742-6596/1176/4/042025