تحلیل پراکنش فصلی بارش‌های فرین در ایران با استفاده از پایگاه AgERA5

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد

2 استادیار اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد

3 پژوهشگر پسادکتری اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد

چکیده

بارش­های فرین به‌ویژه در مناطق خشک و نیمه خشک به عنوان یک مخاطره جدی تلقی شده، خطر رخداد سیل را افزایش داده و زمان محدودی برای هشدار باقی می‌گذارند. این مطالعه با هدف درستی سنجی متغیر بارش و بارش­­های فرین  پایگاه AgERA5 و بررسی پراکنش فصلی بارش­های فرین­ در ایران انجام شده است. ابتدا، درستی داده­های بارش پایگاه AgERA5 با کاربست سنجه­های آماری NRMSE، MBE و PCC مورد بررسی قرار گرفت. بررسی خطاها نشان داد که داده AgERA5 بیشترین مقدار NRMSE را در اقلیم مرطوب سواحل شمالی و همچنین مناطق پرباران زاگرس و شمال­غربی دارد. در مقابل، این پایگاه، بارش را در مناطق خشک و نیمه خشک ایران با دقت بیشتری برآورد می­کند. برای بررسی بارش فرین فصلی، از سه شاخص شدت بارش روزانه (SDII)، بیشینه بارش یک­روزه (RX1day) و روزهای همراه با بارش سنگین (R10mm) استفاده شد. درستی سنجی شاخص­های فرین نشان داد که پایگاه AgERA5 در برآورد شاخص R10mm در بخش­های بزرگی از کشور کم­برآوردی دارد و در مقابل دو شاخص RX1day و SDII در بیش­تر مناطق­ ایران­ بیش­برآوردی دارند. همانند میانگین بارش، بیشینه خطا و اریبی بارش­­های فرین در سواحل خزری دیده می­شود. نتایج نشان داد که در حالیکه بیشینه RX1day به مقدار 5/80 میلی­متر در فصل زمستان اتفاق می­افتد، بیشینه SDII با 2/19 میلی­متر/روز در فصل تابستان مشاهده می­شود. این در حالی است که بیشینه تداوم R10mm در تمامی فصول در سواحل خزری مشاهده می­گردد. به­رغم آنکه سواحل خزری بیشینه روزهای همراه با بارش سنگین را در تمامی فصول دارد اما بیشینه تداوم شدت بارش در زاگرس مرتفع دیده می­شود. شدت بارش در تمامی مناطق ایران با ارتفاعات ارتباط مستقیم دارد. در این رابطه، سواحل جنوبی دریای خزر در تمام طول سال، از این قاعده مستثنی است.

کلیدواژه‌ها


عنوان مقاله [English]

Seasonal Distribution Analysis of Extreme Precipitation in Iran using AgERA5 dataset

نویسندگان [English]

  • Nargas Asadi Rahim-Begi 1
  • Azar Zarrin 2
  • Abbas Modfidi 2
  • Abbasali Dadashi-Roudbari 3
1 Department of Geography, Ferdowsi University of Mashhad
2 Department of Geography, Ferdowsi University of Mashhad,
3 Department of Geography, Ferdowsi University of Mashhad
چکیده [English]

Extreme precipitation is considered as a serious hazard, especially in arid and semi-arid regions as they increase the risk of flooding and leave limited time for warning. The aim of this study is to evaluate precipitation of the fifth-generation reanalysis (AgERA5) of the European Centre for Medium-RangeWeather Forecasts (ECMWF) and to investigate the seasonal distribution of extreme precipitation in Iran. In this study, the accuracy of AgERA5 precipitation is evaluated using NRMSE, MBE, and PCC statistics. The error analysis shows that AgERA5 has the highest NRMSE in the humid climate of the northern coasts as well as the rainy regions of Zagros and Northwest of Iran. In contrast, this dataset estimates precipitation in arid and semi-arid regions of Iran more accurately. Three indices, including SDII, RX1day, and R10mm, were used to examine seasonal precipitation. The evaluation of extreme indices shows that the AgERA5 dataset is underestimated R10mm in large parts of the country, and in contrast, the two indices RX1day and SDII are overestimated in most parts of Iran. Like the average precipitation, the maximum error and bias of extreme precipitation are seen on the Southern Caspian Sea coast. The results showed that the maximum one-day precipitation (RX1day) in Iran is 80.5 mm in winter. The maximum daily precipitation intensity (SDII) is observed in southeastern Iran, with 19.2 mm/day in summer. The Southern Caspian Sea coasts show the highest continuity of days with heavy precipitation in all seasons. Despite the fact that this region has the highest number of heavy precipitation days in all seasons, the maximum continuity of heavy precipitation is seen in the high Zagros mountains. Precipitation intensity in all regions of Iran is directly related to altitudes. In this regard, the southern coast of the Caspian Sea is an exception throughout the year.

کلیدواژه‌ها [English]

  • extreme precipitation
  • Precipitation intensity
  • heavy precipitation
  • AgERA5
  • Iran
Alexander, L.V. Zhang, X. Peterson, T.C. Caesar, J. Gleason, B. Klein Tank A. M. G. and Vazquez‐Aguirre, J.L. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5).
Arshad, M. Ma, X. Yin, J. Ullah, W. Liu, M. and Ullah, I. (2021). Performance evaluation of ERA-5, JRA-55, MERRA-2, and CFS-2 reanalysis datasets, over diverse climate regions of Pakistan. Weather and Climate Extremes, 33, 100373.
Benesty, J. Chen, J.,Huang, Y., and Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1-4). Springer, Berlin, Heidelberg.
Chai, T. and Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250.
Chinita, M. J. Richardson, M. Teixeira, J. and Miranda, P. M. (2021). Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environmental Research Letters.
Donat, M. G. Alexander, L. V. Yang, H. Durre, I. Vose, R. and Caesar, J. (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society, 94(7), 997-1006.
Donat, M. G. Sillmann, J. Wild, S. Alexander, L. V. Lippmann, T. and Zwiers, F. W. (2014). Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. Journal of Climate, 27(13), 5019-5035.
Dunn, R. J. Alexander, L. V. Donat, M. G. Zhang, X. Bador, M. Herold, N. and Bin Hj Yussof, M. N. A. (2020). Development of an updated global land in situ‐based data set of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres, 125(16), e2019JD032263.
Edenhofer, O. (2015). Climate change 2014: mitigation of climate change (Vol. 3). Cambridge University Press.
Grazzini, F. (2007). Predictability of a large-scale flow conducive to extreme precipitation over the western Alps. Meteorology and Atmospheric Physics, 95(3), 123-138.
Halabian, A. and Keikhosravi Kiany, M. (2020). Evaluation of Variations in Extreme Precipitation Indices in Iran. Spatial Planning, 10(4), 24-45. doi: 10.22108/sppl.2020.116339.1371 (In Persian).
Hersbach, H. Bell, B. Berrisford, P. Hirahara, S. Horányi, A. Muñoz‐Sabater, J. and Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
Hu, Z. Hu, Q. Zhang, C. Chen, X. and Li, Q. (2016). Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. Journal of Geophysical Research: Atmospheres, 121(10), 5648-5663.
Ines, A. V. and Hansen, J. W. (2006). Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and forest meteorology, 138(1-4), 44-53.
IPCC (2013). Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2013), pp. 1-30.
Jiang, Q. Li, W. Fan, Z. He, X. Sun, W. Chen, S. and Wang, J. (2021). Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. Journal of Hydrology, 595, 125660.
Kanamitsu, M. Ebisuzaki, W. Woollen, J. Yang, S. K. Hnilo, J. J. Fiorino, M. and Potter, G. L. (2002). Ncep–doe amip-ii reanalysis (r-2). Bulletin of the American Meteorological Society, 83(11), 1631-1644.
Katiraie-Boroujerdy, P. S. Ashouri, H. Hsu, K. L. and Sorooshian, S. (2017). Trends of precipitation extreme indices over a subtropical semi-arid area using PERSIANN-CDR. Theoretical and Applied Climatology, 130(1-2), 249-260.
Kiany, M. S. K. Masoodian, S. A. Balling Jr, R. C. and Montazeri, M. (2020). Evaluation of the TRMM 3B42 product for extreme precipitation analysis over southwestern Iran. Advances in Space Research, 66(9), 2094-2112.
Kirchmeier-Young, M. C. and Zhang, X. (2020). Human influence has intensified extreme precipitation in North America. Proceedings of the National Academy of Sciences, 117(24), 13308-13313.
Lai, S. Xie, Z. Bueh, C. and Gong, Y. (2020). Fidelity of the APHRODITE dataset in representing extreme precipitation over central asia. Advances in Atmospheric Sciences, 37(12), 1405-1416.
Li, N. Tang, G. Zhao, P. Hong, Y. Gou, Y., and Yang, K. (2017). Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmospheric research, 183, 212-223.
Lucas, E. W. M. de Souza, F. D. A. S. dos Santos Silva, F. D. da Rocha Júnior, R. L. Pinto, D. D. C. and da Silva, V. D. P. R. (2021). Trends in climate extreme indices assessed in the Xingu River basin-Brazilian Amazon. Weather and Climate Extremes, 100306.
Miao, C. Ashouri, H. Hsu, K. L. Sorooshian, S. and Duan, Q. (2015). Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. Journal of Hydrometeorology, 16(3), 1387-1396.
Mofidi, A. (2004). Synoptic Climatology of Flood Precipitation Originating in the Red Sea Region in the Middle East, Geographical Research, 19 (4), 71-93 (In Persian).
Mofidi, A. Zarrin, A. Ghobadi, G. (2007). Determining the synoptic pattern of autumn heavy and extreme precipitations on the southern coast of the Caspian Sea. Journal of the Earth and Space Physics, 33(3), 1-1 (In Persian).
Myhre, G. Alterskjær, K. Stjern, C. W. Hodnebrog, Ø. Marelle, L. Samset, B. H. and Stohl, A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific reports, 9(1), 1-10.
Rahimzadeh, F. Asgari, A. and Fattahi, E. (2009). Variability of extreme temperature and precipitation in Iran during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(3), 329-343.
Raziei, T. Sotoudeh, F. (2017). Investigation of the accuracy of the European Center for Medium Range Weather Forecast (ECMWF) in forecasting observed precipitation in different climates of Iran. Journal of the Earth and Space Physics, 43(1), 133-147 (In Persian).
Reichle, R. H. Liu, Q. Koster, R. D. Draper, C. S. Mahanama, S. P. and Partyka, G. S. (2017). Land surface precipitation in MERRA-2. Journal of Climate, 30(5), 1643-1664.
Rischmüller, A. Karwat, A. Blender, R. and Franzke, C. (2021, April). Extreme Precipitation in the Eastern Mediterranean in ERA5. In EGU General Assembly Conference Abstracts (pp. EGU21-10019).
Saha, S. Moorthi, S. Wu, X. Wang, J. Nadiga, S. Tripp, P. and Becker, E. (2014). The NCEP climate forecast system version 2. Journal of climate, 27(6), 2185-2208.
Soltani, M. Laux, P. Kunstmann, H. Stan, K. Sohrabi, M. M .Molanejad, M. and Zawar-Reza, P. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126(3-4), 775-795.
Sun, Q. Zhang, X. Zwiers, F. Westra, S. and Alexander, L. V. (2021). A global, continental, and regional analysis of changes in extreme precipitation. Journal of Climate, 34(1), 243-258.
Sun, S. Shi, W. Zhou, S. Chai, R. Chen, H. Wang, G. and Shen, H. (2020). Capacity of satellite-based and reanalysis precipitation products in detecting long-term trends across Mainland China. Remote Sensing, 12(18), 2902.
Tapiador, F. J. Turk, F. J. Petersen, W. Hou, A. Y.,García-Ortega, E. Machado, L. A. and De Castro, M. (2012). Global precipitation measurement: Methods, datasets and applications. Atmospheric Research, 104, 70-97.
Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1-2), 123-138.
Ullah, W. Guojie, W. Gao, Z. Tawia Hagan, D. F. Bhatti, A. S. and Zhua, C. (2021). Observed linkage between Tibetan Plateau soil moisture and South Asian summer precipitation and the possible mechanism. Journal of Climate, 34(1), 361-377.
Wang, C. Graham, R. M. Wang, K. Gerland, S. and Granskog, M. A. (2019). Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic Sea ice: effects on sea ice thermodynamics and evolution. The Cryosphere, 13(6), 1661-1679.
Westra, S. Alexander, L. V. and Zwiers, F. W. (2013). Global increasing trends in annual maximum daily precipitation. Journal of climate, 26(11), 3904-3918.
Yu, C. Li, Z. and Blewitt, G. (2021). Global comparisons of ERA5 and the operational HRES tropospheric delay and water vapor products with GPS and MODIS. Earth and Space Science, 8(5), e2020EA001417.
Zarrin, A. & Dadashi-Roudbari, A. (2021c). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1), 643-660.
Zarrin, A. Dadashi Roudbari, A. (2021d). Investigation of precipitation return period and its probability of occurrence in Iran based on Multi-Source Weighted-Ensemble Precipitation (MSWEP). Journal of Geography and Environmental Hazards. doi: 10.22067/geoeh.2021.71102.1079
Zarrin, A. Dadashi-Roudbari, A. (2021a). Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble. Journal of the Earth and Space Physics. doi: 10.22059/jesphys.2021.319270.1007295 (In Persian).
Zarrin, A. Dadashi-Roudbari, A. (2021b). Projection of precipitation intensity in Iran using NEX-GDDP by multi-Model ensemble approach. Iranian Journal of Geophysics. doi: 10.30499/ijg.2021.300366.1353 (In Persian).
Zeder, J. and Fischer, E. M. (2020). Observed extreme precipitation trends and scaling in Central Europe. Weather and Climate Extremes, 29, 100266.
Zhu, J. Xie, A. Qin, X. Wang, Y. Xu, B. and Wang, Y. (2021). An Assessment of ERA5 Reanalysis for Antarctic Near-Surface Air Temperature. Atmosphere, 12(2), 217.