بررسی تغییرات عملکرد و طول مراحل فنولوژی گندم دیم تحت سناریوی RCP با استفاده از دو مدل DSSAT و AquaCrop در غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی، گروه علوم زمین، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران،ایران

2 دانشیار هواشناسی کشاورزی، گروه علوم زمین، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران

3 دانشیار هواشناسی، گروه علوم زمین، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران

4 استادیار گروه علوم و مهندسی آب، دانشگاه بوعلی سینا، همدان، ایران

چکیده

تاثیر تغییر اقلیم به عنوان مهمترین عامل موثر بر کشاورزی و به­خصوص کشت دیم، مدیریت این منابع را در آینده با چالش همراه ساخته است. این مطالعه تلاش دارد تاثیر تغییر اقلیم را بر مقدار عملکرد و طول مراحل فنولوژی گندم دیم در غرب ایران مورد بررسی قرار دهد. به این منظور از دو مدل ریزمقیاس­نمایی SDSM و LarsWG برای شبیه­سازی اقلیم در دوره 30 ساله آتی استفاده شد. برای مدلسازی عملکرد و مراحل فنولوژی نیز از دو مدل AquaCrop و DSSAT در دوره پایه و دوره آتی با لحاظ نمودن سه سناریوی اقلیمی RCP 6/2، 5/4 و 5/8 استفاده شد. نتایج نشان داد کارایی مدل AquaCrop در مقایسه با DSSAT جهت پیش­بینی عملکرد بهتر بوده و خطای کمتری دارد؛ به طوری که مقدار ضریب تبیین داده­های مشاهداتی و شبیه­سازی شده در دوره پایه با مدل AquaCrop در ایستگاه­های کرمانشاه، سنندج و ایلام به­ترتیب 86/0، 64/0 و 89/0 و ضریب RMSE  به­ترتیب 6/198، 6/274 و 0/192 کیلوگرم در هکتار است. در صورتی که در مدل DSSAT مقدار ضریب تبیین به­ترتیب 90/0، 11/0 و 82/0 و ضریب RMSE نیز به ترتیب 9/211، 1/288 و 238 کیلوگرم در هکتار است. نتایج کلی نشان می­دهد در مدل ریزمقیاس­نمایی LarsWG با مدل زراعی AquaCrop و DSSAT کمترین عملکرد برای ایستگاه­های کرمانشاه، سنندج و ایلام به ترتیب در سناریوی 5/8، 5/4 و 5/8 و بیشترین عملکرد در سناریوی 6/2، 6/2 و 5/4 به­دست می­آید که نشان دهنده کاهش عملکرد در سناریوی افزایش دما و افزایش دی­اکسیدکربن است. این در حالی است که در مدل ریزمقیاس­نمایی SDSM بیشترین عملکرد گندم دیم عمدتاً در سناریوهای 5/4 و 5/8 بوده و کمترین عملکرد در سناریوی 6/2 خواهد بود که با نتایج مدل LarsWG متفاوت است. با توجه به این نتایج می­توان بیان کرد نوع مدل ریزمقیاس­نمایی و مدل زراعی می­تواند در نتایج به­دست آمده موثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Yield Changes and Length of Dryland Wheat Phenological Stages under RCP Scenario Using DSSAT and AquaCrop Models in Western Iran

نویسندگان [English]

  • mohammad lotfi 1
  • Gholam Ali Kamali 2
  • Amir Hussain Meshkatee 3
  • Vahid Varshavian 4
1 PhD student in Agricultural Meteorology, Science and Research Branch, Islamic Azad University Tehran, Iran
2 - Associate Professor of Agricultural Meteorology, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Associate Professor of Meteorology, Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Assistant Professor of Water Science and Engineering, Department of Water Science and Engineering, Bu-Ali Sina University, Hamadan, Iran
چکیده [English]

The impact of climate change as the most important factor affecting agriculture, especially rainfed cultivation has challenged the management of these resources. This study tries to investigate the effect of climate change on the yield and length of the dryland wheat phenological stages in western Iran. For this purpose, two downscaling models, SDSM and LarsWG, were used to simulate the climate over the next 30 years. To model the performance and phonological stages, two models of AquaCrop and DSSAT in the base period and the future period were used, considering the three RCP climate scenarios of 2.6, 4.5, and 8.5. The results showed that the AquaCrop model has better performance and less error than DSSAT. So that the value of the coefficient of determination between observed and simulated data in the base period with AquaCrop model in Kermanshah, Sanandaj, and Ilam stations are 0.86, 0.64, and 0.89, respectively; and RMSE coefficient values are 198.6, 274.6 and 192 kg/ha, respectively. While, in the DSSAT model, the coefficient of determination is 0.90, 0.11, and 0.82, respectively, and the RMSE coefficient is 219.9, 288.1, and 238 kg/ha, respectively. The general results show that in LarsWG downscale model with AquaCrop and DSSAT agronomic model, the lowest yields are allocated to Kermanshah, Sanandaj, and Ilam in 8.5, 4.5, and 8.5 scenarios, respectively, and the highest yields are obtained in 2.6, 2.6, and 4.5 scenarios; which indicates a decrease in performance in the scenario of rising temperature and rising carbon dioxide. However, in the SDSM downscale model, the highest yield of dryland wheat is mainly in scenarios 4.5 and 8.5, and the lowest yield will be in scenario 2.6, which is different from the results of the LarsWG model. According to these results, it can be stated that the type of downscale model and crop model can be effective in the obtained results.

کلیدواژه‌ها [English]

  • Dryland wheat
  • yield
  • RCP
  • climate change
Ahmadali, Kh., Hosseini Pajouh, N. and Liaghat, A. (2015). Determination of optimal planting date of rainfed wheat, in Kurdistan Province, Iran, Applied field Crops Research, 28(4):9-18. DOI: 10.22092/AJ.2016.106737. (In Farsi)
Akhavan, S, Delavar, N.. and Mehnatkesh, A. (2017). Climate Change Impact on Some Factors Affecting Rainfed Wheat Growth (Case Study: Chaharmahal and Bakhtiari Province), J. Water and Soil Sci (Sci. & Technol. Agric. & Natur. Resour.), 21 (2): 131-149.DOI: 10.18869/acadpub.jstnar.21.2.131. (In Farsi)
Alexandrov, V. and Hoogenboom, G. (2000). Vulnerability and adaptation assessments of agricultural crops under climate change in the southeastern USA. Theor Appl Climatol 67:45–63. doi:10.1007/s007040070015
Allen, R.G., Periera, L.S., Raes, D. and Smith, M. (1998). Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper No. 56. FAO: Rome, Italy.
Amiri, E., Bahrani, A., Khorsand, A. and Haghjoo, M. (2016). Evaluating AquaCrop Model Performance to Predict Grain Yield and Wheat Biomass, Under Water Stress, Water and Soil Science, 25(4/2):217-229. (In Farsi)
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M.E., Barati, M.A. and Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran, Agricultural Water Management 100: 1-8
Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M. and Andarzian, B. (2015). Determining optimum sowing date of wheat using CSM-CERES-Wheat model, Journal of the Saudi Society of Agricultural Sciences, 14, 189–199.
Anwar, M.R., O’Leary, G., McNeil, D., Hossain, H., Nelson, R. (2007). Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Res. 104, 139–147.
Azizi, A.H. and Safarkhani, A. (2002). Drought Assessment and Its Impact on Dryland Wheat Yield in Ilam Province with Emphasis on Recent Droughts (2000-2001), Modares Journal of Humanities: 79-61. (In Farsi)
Bannayan, M., Lotfabadi, S.S., Sanjani, S., Mohamadian, A. and Aghaalikhani, M. (2011). Effects of precipitation and temperature on crop production variability in northeast Iran. Int J Biometeorol, 55:387-401. doi:10.1007/s00484-010-0348-7
Delghandi, M., Andarzian, B., Broomandnasab, S., Massah Bovani, A. and Javaheri, E. (2014). Evaluation of DSSAT 4.5-CSM-CERES-Wheat to Simulate Growth and Development, Yield and Phenology Stages of Wheat under Water Deficit Condition (Case Study: Ahvaz Region), Journal of Water and Soil, 28 (1):82-91. DOI: 10.22067/JSW.V0I0.20658. (In Farsi)
Dettori, M., Cesaraccio, C., Motroni, A., Spano, D. and Duce,P., 2011. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy, Field Crops Research 120:179–188.
De la Casa, A., Ovando, G., Bressanini, L., & Martínez, J. (2013). AquaCrop model calibration in potato and its use to estimate yield variability under field conditions. Atmospheric and Climate Sciences, 3, 397-407
Eyni Nargeseh, H., Deihimfard, R., Soufizadeh, S., Haghighat, M. and Nouri, O. (2015). Predicting the impacts of climate change on irrigated wheat yield in Fars province using APSIM model, EJCP, 8(4):203-224. (In Farsi)
Eyshi Rezaie, E. and Bannayan, M. (2012). Rainfed wheat yields under climate change in northeastern Iran. Meteorol.Appl.19: 346– 354.
Farajzadeh Asl, M., Kashki, A. and Shayan, S. (2009). Analysis of yield variability of dryland wheat crop with the approach of climate change (study area of Khorasan Razavi province), Human Sciences MODARES, 256-227. (In Farsi)
Farajzadeh Asl, M., Khourani, A., Bazgir, S. And Ziaeian, P. (2011). Identification and analysis of the effect of climatic parameters and indicators of agricultural climatology on different stages of dryland wheat Phenology in Kurdistan province, , Human Sciences MODARES:1-17. (In Farsi)
Fischer, G., Shah, M. and Van Velthuizen, H., 2002. Climate Change and Agricultural Vulnerability. Special Report for the UN World Summit on Sustainable Development, 26 August–4 September. International Institute for Applied Systems Analysis, Johannesburg, Laxenburg, Austria152.
Helali, J. (2018). Seasonal prediction of rainfed wheat yield by combining crop models and statistical methods, Phd thesis in Agrometeorology, University of Tehran, Karaj, Iran.
Iqbal, M., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A. and del Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management 135: 61-72.
Jamieson, P.D., Porter, J.R., Goudriaan, J., Ritchie, J.T., van Keulen, H. and Stol, W. (1998). A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown, under drought, Field Crops Research, 55:23-44.
Johnen, T. Boettcher, U. and Kage, H. (2012). A variable thermal time of the double ridge to flag leaf emergence phase improves the predictive quality of a CERES-Wheat type phenology model, Computers and Electronics in Agriculture, 89:62–69.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A.,Wilkens, P.W., Singh, U., Gijsman, A.J., and Ritchie, J.T. (2003). The DSSAT cropping system model, European Journal of Agronomy, 18 (3–4): 235–265. DOI:10.1016/S1161-0301(02)00107-7
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4): 267-288. DOI:10.1016/S1161-0301(02)00108-9
Kamali, Gh.A. and Bazigar, S., 2008. Wheat yield prediction using agro meteorological indices for some regions of the Western of the country, J. Agric. Sci. Natur. Resour., 15(2):113-121. (In Farsi)
Kamali, Gh.A., Mollaei, P. and Behyar, M.B. ( 2010). Development of  Zanjan Province  Dry Land Wheat Atlas by using Climatic Data and GIS, Journal of Water and Soil, 24(5):894-907. (In Farsi).
Kamali, Gh.A., Sadaghiani Poor, A. and Sedaghat Kerdar, A. (2008). The climatic zoning of dryland wheat in Eastern Azerbaijan, Water and Soil, 22 (2):467-483.10.22067/JSW.V0I22.1045. (In Farsi)
Khalili, N., Davary, K., Alizadeh, A., Kafi, M. and Ansari, K. (2014). Simulation of  Rainfed Wheat Yield using AquaCrop Model, Case Study: Sisab Rainfed Researches Station, Northern Khorasan, Journal of Water and Soil, 28(5):930-939. (In Farsi)
Koocheki, A. and Nassiri, M. (2008). Impacts of climate change and CO2 concentration on wheat yield in Iran and adaptation strategies. Iran. J. Field Crops Res. 6(1): 139-153. (In Farsi).
Kouchaki, A., Nassiri, M., Sharifi, H.R.,Soltani, A.A.F., and Kamali, G.A. (2003). Simulation of changes in climatic parameters of Iran under doubles CO2 concentration using General Circulation Models, Desert, 8(2):179-191.
Kobayashi, K. and Salam, M.U., 2000. Comparing simulated and measured values using mean squared deviation and its components, Agronomy Journal, 92 (2): 345-352.
McCown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holtzworth, D.P. and Freebairn, D.M., 1996. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 50(3): 255-271. DOI: 10.1016/0308-521X(94)00055-V
Mahru Kashani, A.H., Soltani, A., Galeshi, S. and Kalate-Arabi, M. (2010). Estimates of genetic coefficients and evaluation of model DSSAT for Golestan province, EJCP, 3(2):229-253.
Mavromatis, T. (2016). Spatial resolution effects on crop yield forecasts: An application to rainfed wheat yield in north Greece with CERES-Wheat, Agricultural Systems, 14: 38-48
Mkhabela, M.S. and Bullock, P.R. (2012). Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada, Agricultural Water Management, 110:16-24.
Mohammadi, A. Yazdanpanah, H., and Mohammadi, F. (2014). Investigation of the occurrence of climate change and its effect on planting time and growth period of durum wheat (rainfed), Case study: Sararoud Station, Kermanshah, Natural Geography Research, 46: 231-246.
Mohammadi, H. (2005). Determining the appropriate calendar for dryland wheat cultivation in Ilam province using rainfall start index, Geographical research, 51: 31-15. (In Farsi).
Nassiri, M., Koocheki, A., Kamali, G. and Shahandeh, H. (2006). Potential impact of climate change on rainfed wheat production in Iran, Archives of Agronomy and Soil Science, 52 (1): 113-124.
Nouri, M., Homaee, M. and Bannayan, M., 2017. Climate variability impacts on rainfed cereal yields in west and northwest Iran, Int J Biometeorol, 61:1571-1583
Nouri, M., Homaee, M., Bannayan, M. and Hoogenboom, G., 2017. Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change, Agricultural Water Management, 186:108-119.
Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J.M., Ortiz Monasterio, J.R. and Reynolds, M., 2008. Climate change: Can wheat beat the heat?. Agric. Ecosyst Environ. 126(1):46-58.
Rahmani, M., Jami Al-Ahmadi, M., Shahidi, A. and Hadizadeh Azghandi, M. (2015). Effects of climate change on length of growth stages and water requirement of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Case study: Birjand plain), Journal of Agroecology, 7(4):443-460. (In Farsi).
Ranuzzi, A. and Srivastava, R. (2012). Impact of Climate Change on Agriculture and Food Security. ICRIER Policy Series, no. 16.
Ray, D.K., Gerber, J.S., MacDonald, G.K. and West, P.C. (2015). Climate variation explains a third of global crop yield variability. Nature Commun 6, doi: 10.1038/ncomms6989
Saadi, S., Todorovic, M., Tanasijevic, L., Pereira, L.S., Pizzigalli, C. and Lionello, P. (2015). Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manage. 147: 103-115.
Semenov, M.A. (2009). Impacts of climate change on wheat in England and wales. Roy. Soc. 6: 343-350.
Shakiba, A.R., Shabkhiz, S. and Hashamdar, F. (2015). Possible effects of climate change on wheat crop in the state of Tehran, Researches in Earth Sciences, 23:53-65. (In Farsi).
Soleymani Nanadegani, M., Parsinejad, M., Araghinejad, S. and Massah Bavani, A. (2011). Study on Climate Change Effect on Net Irrigation Requirement and Yield for Rainfed Wheat (Case Study: Behshahr), Journal of Water and Soil, 25(2):389-397. DOI: 10.22067/JSW.V0I0.9485
Steduto, P., Hsiao, T. C., and Fereres, E. (2007). On the conservative behavior of biomass water productivity. Irrigation Science, 25(3), 189-207.
Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: concepts and underlying principles. Agronomy Journal, 101(3): 426-437. DOI: 10.2134/agronj2008.0139s
Talliee, A.A. and Bahramy, N. (2003). The effects of Rainfall and Temperature on the yield of Dryland wheat in Kermanshah province, Irannian Journal of Soil and Waters Sciences, 17(1):106-112.
Tavakoli, A., Liaghat, A. and Alizadeh, A. (2014). Soil Water Balance, Sowing Date and Wheat Yield Using AquaCrop Model under Rainfed and Limited Irrigation, Journal of Agricultural Engineering Research, 14(4):41-56.
Van Keulen, H. and Wolf, J. (1986). Modelling of agricultural production: Weather soils and crops. Simulation Monographs. Pudoc, Wageningen, The Netherlands, p. 479.
Van Ittersum, M.K., Le elaar, P.A., Van Keulen, H., Krop, M.J., Bastiaans, L., Goudriaan, J., 2003. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3-4): 201–234. DOI: 10.1016/S1161-0301(02)00106-5
Xiangxiang, W., Quanjiu,W., Jun, F. and Qiuping, F. ( 2013).  Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China’s Loess Plateau, Agricultural Water Management 129:95–104.
Zhang, W., Liu, W., Xue, Q., Pei, H., Chen, J. and Han, X. (2013). Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science and Technology 68(4):821-828.