بررسی تغییرات کاربری اراضی حوضه آبریز کرخه در سال‌های 1990 و 2020 با استفاده از پلتفرم گوگل ارث انجین و تصاویر ماهواره‌ای لندست

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی و مدیریت منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

حوضه کرخه یکی از مهم­ترین حوضه­های آبریز ایران از نظر مدیریت منابع آب و اراضی کشاورزی می­باشد جاییکه بزرگترین سد خاکی ایران و خاورمیانه در آن قرار گرفته است. تغییرات کاربری اراضی در این حوضه از اهمیت استراتژیک زیادی برخوردار است چرا که به­عنوان سبد غذایی ایران محسوب می­شود. در تحقیق حاضر، با استفاده از تصاویر ماهواره­ای لندست و روش طبقه­بندی جنگل تصادفی در پلتفرم گوگل ارث انجین، تغییرات کاربری اراضی حوضه کرخه در سال­های 1990 و 2020 استخراج و بررسی شده است. در این بررسی، تغییرات 11 کلاس جنگل، درختچه­زار، مرتع، کشاورزی آبی، کشاورزی دیم، باغ، زمین بایر، پهنه آبی، تالاب، شهری و پوشش گیاهی ساحلی مورد ارزیابی قرار گرفته است که بیشترین مساحت منطقه را کلاس­های مرتع و بایر در بر می­گیرند. در این تحقیق، فرآیند طبقه­بندی برای هر سین تصویر لندست در حوضه کرخه به­صورت جداگانه انجام گرفته است و در نهایت تمامی سین­ها باهم موزائیک شده است. با استفاده از این روش، اکثر تصاویر موجود در یک سین مورد استفاده قرار می­گیرد و سری زمانی شاخص­های مختص هر کاربری در هر سین برای طبقه­بندی استفاده می­شود که موجب دست­یابی به نتایج دقیق­تر نسبت به روش طبقه­بندی کل منطقه به­صورت یک­جا، می­گردد. نتایج نشان می­دهد مناطق شهری 133 درصد، پهنه­های آبی 149 درصد، باغ 163 درصد، حاشیه رودخانه­ها 39 درصد، کشاورزی آبی 122 درصد، تالاب 10 درصد و کشاورزی دیم 34 درصد افزایش داشته، درحالیکه جنگل 22 درصد، زمین­های بایر 20 درصد و درختچه­زار 20 درصد کاهش داشته­اند. در نتیجه، این آمار نشان دهنده گسترش کشاورزی و از بین رفتن زمین­های مرتعی می­باشد. در فرآیند صحت­سنجی تصاویر طبقه­بندی شده، دقت کل و ضریب کاپای به­ترتیب 96% و 95% برای سال 1990 و 94% و 93% برای سال 2020 به دست آمد که این مقادیر نشان دهنده­ی دقت مناسب طبقه­بندی انجام شده و اعتبار نتایج این تحقیق می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Land Use Changes in Karkheh Watershed during 1990 and 2020 Using Google Earth Engine Platform and Landsat Satellite Images

نویسندگان [English]

  • Ali Sadian
  • Hossein Shafizadeh-Moghadam
Department of Water Resources Engineering. Faculty of Agriculture. Tarbiat Modares university. Tehran. Iran
چکیده [English]

Karkheh is one of the most important watersheds for water resources management and croplands in Iran, where the largest dam in Iran and the Middle East is located there. Karkheh is considered as Iran’s food basket and exploring land-use changes in this watershed has highly strategic. In the present study, land-use changes during 1990 and 2020 in the Karkheh basin have been extracted and evaluated using Landsat satellite images and random forest algorithm in the Google Earth Engine platform. In this paper, the changes of 11 classes, including forest, shrubland, grassland, irrigated, rainfed, garden, barren, water body, wetland, urban, and riparian have been quantified. The largest area of the region was belong to grassland and barren. In this research, the classification process has been done separately for each Landsat image scene in the Karkheh basin, and finally, all the scenes have been mosaic together. Using this method, most of the images in a scene are used, and the time series of indexes specific to each class of each scene is used for classification, which achieves more accurate results than the method of classifying the whole area in one place. The results show urban areas have increased by 113%, water bodies by 149%, garden by 163%, riparian by 39%, irrigated by 122%, wetland by 10% and rainfed by 34%. However, forest 22%, barren 20%, and shrubs 20% were reduced. As a result, this statistic indicates an expansion of agriculture and reduction of grassland. The accuracy assessment of the classified images confirmed the overall accuracy and kappa coefficient as being 96% and 95% for 1990, 94%, and 93% for 2020. These indices show the appropriate accuracy of classification maps and the validity of the results.

کلیدواژه‌ها [English]

  • Karkheh watershed
  • Land use
  • Google Earth Engine
  • Random forest
Basukala, A. K., Oldenburg, C., Schellberg, J., Sultanov, M., & Dubovyk, O. (2017). Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches. European Journal of Remote Sensing50(1), 187-201.
Becker, W. R., Ló, T. B., Johann, J. A., & Mercante, E. (2021). Statistical features for land use and land cover classification in Google Earth Engine. Remote Sensing Applications: Society and Environment, 21, 100459.
El-Tantawi, A. M., Bao, A., Chang, C., & Liu, Y. (2019). Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environmental monitoring and assessment191(8), 1-18.
Faridatul, M. I., & Wu, B. (2018). Automatic classification of major urban land covers based on novel spectral indices. ISPRS International Journal of Geo-Information7(12), 453.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment202, 18-27.
Gumma, M. K., Thenkabail, P. S., Teluguntla, P. G., Oliphant, A., Xiong, J., Giri, C., ... & Whitbread, A. M. (2020). Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud. GIScience & Remote Sensing57(3), 302-322.
He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters1(4), 213-221.
Jahanbakhshi, f., Ekhtesasi, M, R., (2019). Performance evaluation of three image classification methods (random forest, support vector machine and the maximum likelihood) in land use mapping. Journal of Science and Technology of Agriculture and Natural Resources 22(4):235-247. (In Persian)
Kaabzadeh, S., Ghodousi, J., Arjmandi, R., & Jaafarzadeh Haghighifard, N. (2021). The effects of constructing and exploiting Karkheh Storage Dam on the land uses and quality of regional water. Journal of Environmental Science and Technology (In Persian).
Kazemi, H., Hashemi, H., Maghsood, F. F., Hosseini, S. H., Sarukkalige, R., Jamali, S., & Berndtsson, R. (2021). Climate vs. Human Impact: Quantitative and Qualitative Assessment of Streamflow Variation. Water, 13(17), 2404.
Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources28(1), 205-241.
Li, E., Du, P., Samat, A., Xia, J., & Che, M. (2015). An automatic approach for urban land-cover classification from Landsat-8 OLI data. International Journal of Remote Sensing36(24), 5983-6007.
Mallupattu, P. K., & Sreenivasula Reddy, J. R. (2013). Analysis of land use/land cover changes using remote sensing data and GIS at an Urban Area, Tirupati, India. The Scientific World Journal2013.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing17(7), 1425-1432.
Oliphant, A. J., Thenkabail, P. S., Teluguntla, P., Xiong, J., Congalton, R. G., Yadav, K., ... & Smith, C. (2017). NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Southeast Asia 30 m V001.
Oliphant, A. J., Thenkabail, P. S., Teluguntla, P., Xiong, J., Gumma, M. K., Congalton, R. G., & Yadav, K. (2019). Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. International Journal of Applied Earth Observation and Geoinformation, 81, 110-124.
Salajegheh, A., Razavizadeh, S., Khorasani, N., Hamidifar, M.,  Salajegheh, S. (2011). Land use changes and its effects on water quality (Case study: Karkheh watershed). Journal of environmental studies 37(58):81-86. (In Persian)
Shanani, H S M., Zarei, H. (2016). Investigation of land use changes during the past two last decades (Case Study: Abolabas Basin). Journal of Watershed Management Research, 14(7):237-244. (In Persian)
Steinhausen, M. J., Wagner, P. D., Narasimhan, B., & Waske, B. (2018). Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International journal of applied earth observation and geoinformation, 73, 595-604.
Sundarakumar, K., Harika, M., Begum, S. A., Yamini, S., & Balakrishna, K. (2012). Land use and land cover change detection and urban sprawl analysis of Vijayawada city using multitemporal landsat data. International Journal of Engineering Science and Technology4(01), 170-178.
Talebi, A., Goodarzi, S., Pourghsemi, H. (2018). Investigation of the possibility of landslide hazard mapping using the Random Forest algorithm (Case study: Sardarabad Watershed, Lorestan Province). Journal of Natural Environment Hazards 7(16 ):45-64. (In Persian)
Wagner, P. D., Bhallamudi, S. M., Narasimhan, B., Kumar, S., Fohrer, N., & Fiener, P. (2019). Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environmental Modelling & Software, 122, 103987.
Watershed management plan of Karkheh dam basin (1999) A model for managing water and soil resources in the vast and fertile area of the Zagros. Karkheh Dam Watershed Management Plan Office, Jihad Watershed Management Documentation Center Library (In Persian).
Yan, H., Liu, J., Huang, H. Q., Tao, B., & Cao, M. (2009). Assessing the consequence of land use change on agricultural productivity in China. Global and planetary change67(1-2), 13-19.
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing24(3), 583-594.
Zhang, Y., Zhang, H., & Lin, H. (2014). Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sensing of Environment141, 155-167.