بررسی سه روش غیر مستقیم در برآورد منحنی مشخصه رطوبتی خاک

نوع مقاله : مقاله پژوهشی

نویسنده

بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

در پژوهش حاضر سه روش حل عددی معکوس، تابع انتقالی و شبکه عصبی مصنوعی در برآورد پارامترهای هیدرولیکی خاک مورد ارزیابی قرار گرفت. برای این منظور، آزمایش نفوذ آب به خاک از طریق استوانه­های دوگانه در سه منطقه از استان اصفهان با بافت­های مختلف خاک انجام شد. در هر منطقه نمونه­های دست­خورده و دست­نخورده خاک از سه عمق ) 10-0، 30-10 و 60-30 سانتی­متر برداشت شده و ویژگی­های مختلف فیزیکی و هیدرولیکی خاک در این نمونه­ها اندازه­گیری شد. در این پژوهش، برای برآورد پارامترهای هیدرولیکی به روش معکوس از نرم­افزار HYDRUS-2D/3D استفاده شد. برای ارزیابی روش­های مذکور از شاخص­های ضریب همبستگی پیرسون (r)، ریشه میانگین مربعات خطا (RMSD)، اختلاف میانگین­ها (MSD) و قدر مطلق خطای میانگین­ها (MD) استفاده شد. نتایج نشان داد که روش حل معکوس یک روش قابل اعتماد برای تعیین پارامترهای هیدرولیکی خاک در مقیاس میدانی است. بر اساس ارزیابی­های آماری صورت گرفته، منحنی مشخصه رطوبتی برآوردشده به روش حل معکوس با منحنی مشخصه رطوبتی به دست آمده از طریق برازش مدل ونگنوختن بر داده­های اندازه­گیری­شده، همخوانی بسیار خوبی داشت. بیشترین مقدار ضریب تبیین (R2) بین میزان رطوبت حجمی اندازه­گیری­ و برآورد شده در روش حل عددی معکوس مشاهده شد (9363/0= R2) و بعد از آن به­ترتیب رطوبت حجمی برآوردشده با نرم افزار Rosetta (8629/0= R2) و تابع انتقالی قربانی دشتکی و همایی (8401/0= R2) قرار گرفتند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Three Indirect Methods in Estimating Soil Water Characteristic Curve

نویسنده [English]

  • parisa MASHAYEKHI
Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center. Agricultural Research, Education and Extension organization (AREEO), Isfahan, Iran.
چکیده [English]

In the present study, three methods of the inverse numerical solution, transfer function, and artificial neural network for estimating soil hydraulic parameters were evaluated. A Double-ring infiltration experiment was conducted in three sites with different soil textures with three replications. Disturbed and undisturbed soil samples were also collected from three depths (0−10, 10−30, and 30−60 cm) for each soil, and some soil physical properties were measured. In this study, HYDRUS- 2D/3D software was used for inverse estimating of hydraulic parameters. The accuracy and reliability of the predictions were evaluated by the mean difference (MSD, m3 m-3), the value of mean differences (MD, m3 m-3), the mean and the standard deviation of the root of mean squared differences (RMSD, m3 m-3) and the Pearson’s correlation coefficient (r). The results showed that inverse estimation of soil hydraulic parameters provided a reliable alternative method for determining the soil water retention curve at the field scale. The soil water retention curves obtained from the RETC fitting had very good correspondence with those derived from inverse modeling. The highest value of determination coefficient (R2) was observed between the measured and estimated volumetric moisture in the inverse numerical solution method (R2 = 0.9363). After that, the estimated volumetric moisture with Rosetta software (R2 = 0.8629) and the PTF of Dashtaki and Homayi (R2 = 0.8401) were respectively.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • inverse modeling
  • Pedo Transfer Functions
  • Soil Hydraulic Properties
Abbasi. F. (2009). Assessment of Indirect Methods to Estimate Soil Hydraulic Properties for Simulating Soil Moisture in a Sandy Loam Soil. Journal of Agricultural Engineering Research, 9 (4), 31-44. (In Persian).
Abbasi, F., and Tajic, F. (2007). Simultaneous estimation of hydraulic parameters and solute transportation by inverse solution method at field scale. Journal of Science and Technology of Agriculture and Natural Resources, 11 (1): 111-122.
Abd Rashid, N.S., Askari, M., Tanaka, T., Simunek, J., and van Genuchten, M.Th. (2015). Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, 241–242, 306–312.
Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., and Justes, E. (2015) Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243( 244), 18–28.
Asgarzadeh, H., Mosaddeghi, M. R., Dexter, A. R., Mahboubi, A. A., and Neyshabouri, M. R. (2014). Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, (226–227), 8–20.
Babaeian, E., Homaee, M., and Noroozi, A.A. (2013). Assessing spectrotransfer functions and pedotransfer functions in predicting soil water retentions. Conservation of soil and water resources, 3(2), 25-43. (In Persian).
Bahrami, A., and Aghamir, F. (2020). Simulation of vadose zone flow processes via inverse modeling of modified multistep outflow for fine-grained soils. Soil Science Society of America Journal, 84 (5), https://doi.org/10.1002/saj2. 20112.
Baker, L., and Ellison, D. (2008). Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144, 212–224.
Blake, G.R., and Hartge, K.H. (1986) Bulk density. In: Klute, A., Ed., Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy—Soil Science Society of America, Madison, 363-382.
Charles, W., Oluwapelumi, O. (2021). Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression. SN Applied Sciences.3. https://doi.org/10.1007/s42452-020-03974-7.
Dobarco, M.R., Isabelle Cousin, I., Bas, C.L., Martin, M. P. (2019). Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95.
Da Silva Junior, J.J., Colombo, A., Oliveira, G.C., Silva, B., and Juliaci, J. (2020). Estimation of tropical soils’ hydraulic pro-perties with inverse method and tension infiltrometer field data. Ambiente & Água, 15(3), 1-15https://doi.org/10.4136/ambi-agua.2503.
Ebrahimi, F., and Raoof, M. (2015). Effect of different Rosetta Predictive Model on Soil Hydraulic Properties. Estimation Using HYDRUS-2D and Effect of Land use changing on their. Iranian Journal of Irrigation and Drainage, 2(9), 303-313. (In Persian).
Ethan, D.G., and Eric, E. S. (2007). A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions. Water Resourse Research, 43. W05418.
Fooladmand, H.R. (2011). Pedotransfer functions for point estimation of soil moisture characteristic curve in some Iranian soils. African Journal of Agricultural Research, 6(6), 1586-1591.
Ghorbani Dashtaki, S., Homaee, M. and Khodaverdiloo, H. (2010). Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management, 26(1), 68–74.
Gribb, M. M., Forkutsa, I., Hansen, A., Chandler, D. G. and McNamara, J. P. (2009). The Effect of Various Soil Hydraulic Property Estimates on Soil Moisture Simulations. Vadose Zone Journal, 8, 321–331. doi:10.2136/vzj2008.0088.
Gunarathna, M.H., Sakaic, K., Nakandakaric, T., Momiid, K., Kumaria, M.K.N., and Amarasekaraa, M.G.T.S. (2019). Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils. Soil & Tillage Research 190, 109–119. https://doi.org/10.1016/j.still.2019.02.009
 Jafari Gilandeh, S., Rasoulzadeh, A., and Khodaverdiloo, H. (2013). Evaluating some pedotransfer functions for simulation of transient water flow in soil. Conservation of soil and water resources, 2(4), 1-13. (In Persian).
Kirkham, J.M., Smith, C.J., Doyle, R.B., and Brown, P.H. 2019. Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol). Peer Journal, 6, e6002 https://doi.org/10.7717/peerj.6002
Klute, A. (1986). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. 2nd ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA.
Lai, J., and Ren, L. (2016). Buffer index effects on hydraulic conductivity measurements using numerical simulations of double-ring infiltration. Soil Science Society of America Journal, 74, 1526–1536.
Mashayekhi, P., Ghorbani Dashtaki, S., Mosaddeghi, M.R., Shirani , H. and Mohammadi Nodoushan, A.R . (2016). Different scenarios for inverse estimation of soil hydraulic parameters from double ring infiltrometer data using HYDRUS 2D/3D. International Agrophysics, 30(2), 203-210.
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H., and Nouri M.R. (2017). Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method. Iranian Journal of Water and Soil Research, 47(4): 829-838. (In Persian).
Merdun, H., Cinar, O., Meral, R., and Apan, M. (2006). Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90,108–116.
Mirzaee, S., Zolfaghari, A. A, Gorjib, M Miles Dyckc, M., and Ghorbani Dashtakia, S. (2013). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes Archives of Agronomy and Soil Science, http://dx.doi.org/10.1080/03650340.2013.823477
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522.
Naik, A. P., Ghosh, B., and Pekkat, S. (2018). Estimating soil hydraulic properties using mini disk infiltrometer. ISH Journal of Hydraulic Engineering, 25(1), 2164-3040. https://doi.org/10.1080/09715010.2018.1471363.
Nakhaei, M. and Šimůnek, J. (2014). Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. Journal of Hydrology and Hydromechanics, 62(1), 7–15.
Nemes, A., Roberts, R.T., Rawls, W.J., Pachepsky, Ya. A., and van Genuchten, M.Th. (2008). Software to estimate –33 and –1500 kPa soil water retention using the non-parametric k-Nearest Neighbor technique. Environmental Modelling and Software, 23, 254–255.
Pachepsky, Y., and Rawls, W.J. 2004. Development of Pedotransfer Functions in Soil Hydrology. 30, Pp, 512.
Rastgou, M., Bayatb, H., Mansoorizadehc, M., Gregoryd, A.S. (2020). Estimating the soil water retention curve: Comparison of multiple nonlinear regression approach and random forest data mining technique. Computers and Electronics in Agriculture, 174. https://doi.org/10.1016/j.compag.2020.105502.
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1,318–333.
Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M. (2011). Inverse modeling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrology and Earth System Sciences, 15, 3043– 059.
Schaap, M.G., Leij, F.J., van Genuchten, M.Th. (1998). Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal, 62, 847–855.
Schaap, M. G., and van Genuchten, M.Th. (2001). ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251,163-176.
Schelle, H. Iden S.C., Schlüter, S., Vogel, H.J. and Durner, W. (2012). Identification of effective flow processes and properties from virtual soils using inverse modeling. Geophysical Research Abstracts, 14.
Šimůnek, J., van Genuchten, M.Th. Šejna, M. (2012). HYDRUS: model use, calibration, and validation. American Society of Agricultural and Biological Engineers, 55(4), 1261–1274.
Trejo-Alonso J., Carlos Fuentes, C., Chávez, C., Quevedo, A., Gutierrez-Lopez, A., and Brandon González-Correa, B. (2021). Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks Water, 13, 705. https://doi.org/10.3390/w13050705.
Van Genuchten M. Th. 1980. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G. and van Genuchten, M.Th. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal, 9, 795–820. doi:10.2136/vzj2010.0045
Vrugt, J. A., Stauffer, P. H., Wöhling, Th., Robinson, B.A., and Vesselinov, V.V. (2008). Inverse modeling of subsurface flow and transport Properties: a review with new developments. Vadose Zone Journal, 7(2), 843–864.