رویکرد جیره‌بندی در شبیه‌سازی-بهینه‌سازی چندهدفه بهره‌برداری از مخزن سد ایلام با استفاده از الگوریتم MOPSO

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی منابع آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه مهندسی منابع آب‌، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 گروه آبیاری و زهکشی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

چکیده

در این تحقیق از ترکیب مدل شبیه‌سازی و بهینه‌سازی برای اعمال سیاست جیره‌بندی مخزن استفاده گردید. شبیه‌سازی حوضه مورد مطالعه با استفاده از مدل WEAP برای بهره‌برداری از مخزن سد ایلام واقع بر رودخانه کنجانچم انجام شد و برای انجام بهینه‌سازی سیستم، از مدل چند هدفه MOPSO استفاده شد. به‌طوری‌که در آن، هدف اول، حداکثر نمودن درصد تأمین نیازها در مقابل هدف دوم یعنی حداقل نمودن میزان تخطی از ظرفیت‌های مجاز مخزن در طول دوره بهره‌برداری قرار گرفت. در این راستا مدل‌سازی بهره‌برداری از مخزن بر اساس وضع موجود بهره‌برداری منطقه و برای یک بازه 360-ماهه صورت گرفت. در نهایت با تعریف سناریوی بهینه و اعمال سیاست جیره‌بندی مخزن، بهینه‌سازی بهره‌برداری از سیستم انجام شد و نتایج با سناریوی مرجع مقایسه گردید. در این تحقیق با در نظر گرفتن 24 متغیر تصمیم شامل 12 متغیر تراز جیره‌بندی و 12 متغیر ضریب جیره‌بندی پس از 1000 تکرار جواب‌های بهینه حاصل گردید. نتایج نشان داد در سناریوی بهینه تخطی از ظرفیت‌های مجاز مخزن در هیچ دوره‌ای اتفاق نیفتاد درحالی‌که در سناریوی مرجع در ماه‌هایی که کمبود آب بیشتری وجود داشت در ماه‌های متوالی تراز مخزن به تراز مرده رسید که باعث عدم تأمین نیاز سیستم در این ماه‌ها و آسیب جدی به سیستم می‌گردد. با توجه به اعمال سیاست جیره‌بندی در سناریوی بهینه، درصد تأمین نیاز در ماه‌های بحرانی بین 20-35 درصد نسبت به سناریوی مرجع افزایش یافت که حاکی از کاهش قابل‌توجه شدت شکست در ماه‌های مذکور نسبت به سناریوی مرجع است.

کلیدواژه‌ها


عنوان مقاله [English]

Hedging approach in Multi-Objective Simulation-Optimization of operation of Ilam Dam Reservoir using MOPSO algorithm

نویسندگان [English]

  • Sedighe Mansouri 1
  • Hossein Fathian 1
  • Alireza Nikbakht shahbazi 2
  • Mehdi Asadi lour 3
  • Ali Asareh 3
1 Department of Water Resources Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Department of Water Resources Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 Department of Irrigation and Drainage, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

In this research, the simulation and optimization models are integrated to apply the reservoir hedging policy. The simulation of the studied basin is executed using the WEAP model to conduct the system optimization and the multi-objective MOPSO model is utilized so that the first purpose is to maximize the percentage of supplying demands, while the second one is to minimize the violation of allowable capacities of the reservoir during the operation period. In this regard, the operation modeling from the reservoir was carried out based on the current condition for a 360-month period. Finally, by defining the optimized scenario and applying the reservoir hedging policy, the optimization of the operation from the reservoir is conducted and the results were compared with the outcomes of the reference scenario. In this study, by considering 24 decision variables including 12 hedging level variables and 12 hedging coefficient variables, the optimal answers were achieved after 1000 iterations. The results showed that the violation of the allowable capacities has not occurred in any periods, while in the reference scenario the reservoir level has reached the dead level in sequent months with more water shortage which might lead to the lack of water supply in such months and serious damages to the system. Due to the application of hedging policy in the optimized scenario, the percentage of supply in the critical months has increased between 20-35% compared to the reference scenario, which indicates a significant reduction in the failure rate in such months compared to the reference scenario.

کلیدواژه‌ها [English]

  • Hedging Policy
  • MOPSO
  • Optimization
  • simulation
  • WEAP
Azari, A., Hamzeh, S., and Naderi, S. (2018). Multi-objective optimization of the reservoir system operation by using the hedging policy. Water Resource Management, 32(6), 2061–2078.
Bayesteh, M., and Azari, A. (2021). Stochastic Optimization of Reservoir Operation by Applying Hedging Rules. Journal of Water Resources Planning and Management, 147(2), 04020091-9.
Daraeikhah, M., Meraji, S.H., and Afshar, M.H. (2009). Application of Particle Swarm Optimization to Optimal Design of Cascade Stilling Basins. Scientia Iranica, 16(1), 50-57.
Deb, k., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evolutionary Computing, Indian. 6(2), 182–197.
Draper, A.J., and Lund, J.R. (2004). Optimal hedging and carry over storage value. Waterce Resource Planning and Management, ASCE, 130(1), 83–87.
Felfelani, F., Jalali Movahed, A., and Zarghami, M. (2013). simulating hedging rules for effective reservoir operation by using system dynamics: a case study of Dez Reservoir, Iran. Lake and Reservoir Management. 29(2), 126-140.
Izquierdo, J., Montalvo, I., Pérez, R., and Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784.
Li, X., Zhao, Y., Shi, C., Sha, J., Wang, Z.L., and Wang, Y. (2015). Application of Water Evaluation and Planning (WEAP) model for water resources management strategy estimation in coastal Binhai New Area, China. Ocean & Coastal Management. 106, 97-109.
Loucks, D.P., and van Beek, E. )2005(. Water Resources Systems Planning and Management, An Introduction to Methods, Models and Applications. UNESCO Publication, PP: 677.
Moghaddam, A., Afsharnia, M., and Peirovi Minaee, R. (2020). Preparing the optimal emergency response protocols by MOPSO for a real-world water distribution network. Environmental Science and Pollution Research, 27(2), 30625–30637.
Mousavi, S.J., Anzab, N.R., Asl-Rousta, B., and Kim, J.H. (2017). Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation. Water resources management, 31(9), 1-20.
Nagesh Kumar, D., and Janga Reddy, M. (2007). Multipurpose reservoir operation using particle swarm optimization. Journal of Water Resources Planning and Management, 133(3), 192-201.
Neelakantan, T.R. and Pundarikanthan, N. V. (1999). Hedging rule optimization for water supply reservoirs system. Water Resources Management, 13(6), 409–426.
Rafiee Anzab, N., Mousavi, S.J., Rousta, B.A., and Kim, J.H. (2016). Simulation optimization for optimal sizing of water transfer systems. In Harmony Search Algorithm (pp. 365-375): Springer.
Reddy, M.J., and Kumar, D.N. (2007). Optimal reservoir operation for irrigation of multiple crops using elitist-mutated particle swarm optimization. Hydrological Sciences Journal, 52(4), 686-701.
Rezaei, F., Safavi, H.R. and Zekri, M. (2017). A Hybrid Fuzzy-Based Multi-Objective PSO Algorithm for Conjunctive Water Use and Optimal Multi-Crop Pattern Planning. Water resources management, 31, 1139–1155.
Rezaei, F. and Safavi, H.R. (2020). f-MOPSO/Div: an improved extreme-point-based multi-objective PSO algorithm applied to a socio-economic-environmental conjunctive water use problem. Environmental Monitoring Assessment. 192(12): 767. DOI: 10.1007/s10661-020-08727-y.
Sen, G.D., Sharma, J., Goyal, G.R., and Singh, A.K. (2017). A multi-objective PSO (MOPSO) algorithm for optimal active power dispatch with pollution control. Mathematical Modelling of Engineering Problems, 4(3), 113-119.
Shih, J.S., and ReVelle, C. (1994). Water-supply operations during drought: Continuous hedging rule. Water Resource Planning and Management, ASCE, 120(5), 613–629.
Taghian, M., Rosbjerg, D., Haghighi, A., and Madsen, H. (2014). Optimization of Conventional Rule Curves Coupled with Hedging Rules for Reservoir Operation. Water Resources Planning and Management, 140(5), 693–698.
Tennant, D.L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10.
Xilin, Z., Yuejin, T., and Zhiwei, Y. (2019). Resource allocation optimization of equipment development task based on MOPSO algorithm. Journal of Systems Engineering and Electronics, 30(6), 1132– 1143.
Vasan, A. (2013). Optimal Reservoir Operation for Irrigation Planning Using the Swarm Intelligence Algorithm. Metaheuristics in water, Geotechnical and Transport Engineering, 147-165.
Zhang, J., Wu, Z., Cheng, C.T., and Zhang, S.Q. (2011). Improved particle swarm optimization algorithm for multi-reservoir system operation. Water Science and Engineering, 4(1), 61-74.