استفاده از اصل حداکثر آنتروپی در تعیین تعداد بهینه ایستگاه‌های پایش کیفیت آب سطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

2 دانشیار گروه مهندسی مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

چکیده

بهینه­سازی شبکه پایش، یک فرایند تصمیم­گیری است که از طریق آن، بهترین ترکیب در بین ایستگاه­های موجود انتخاب می‌شود. با توجه به ملاحظات اقتصادی و کاهش هزینه­های پایش، رویکردهای بهینه­سازی در این پژوهش کاهش ایستگاه­های پایش کیفیت آب سطح در حوضه آبخیز دز در محدوده استان لرستان است. در این راستا، با استفاده از الگوریتمی بر اساس اصل حداکثر آنتروپی و بر مبنای شاخص آلودگی پارامترهایSO4, Cl, HCO3, K, ,Na, Ca, Mg,  ,TH, SAR, EC, TDS, وpH  نسبت به بهینه­سازی شبکه پایش موجود با 18 ایستگاه در دوره آماری 1387 تا 1396 اقدام شد. ابتدا میانگین رتبه هر ایستگاه در 10 سال آماری مذکور بدست آمد. سپس برای آنتروپی شبکه بر حسب تعداد ایستگاه و زمان مدل­هایی پیشنهاد شد. پس از برازش بهترین مدل، نتایج نشان داد که بر اساس پارامترهای SO4, ,Cl, HCO3 ، K، Na، Ca، Mg،  pH،TH،TDS ، SARو EC به ترتیب تعداد 9، 9، 7، 11، 11، 11، 10، 7، 10، 10، 10 و 11 ایستگاه به عنوان ایستگاه‌های پایش کیفیت آب سطحی منطقه مورد مطالعه کفایت می‌کند. به منظور تایید شبکه پیشنهاد شده، با مقایسه آنتروپی شبکه مذکور با آنتروپی شبکه‌های تصادفی با تعداد ایستگاه‌های فوق بر اساس 12 پارامتر ذکر شده در هر سال آماری کارایی شبکه منتخب تایید شد. همچنین از میان 12 شاخص کیفی ارزیابی شده کلرید (Cl) بیشترین مقدار آنتروپی وزن را به خود اختصاص داد. بنابراین کلرید دارای حداکثر آنتروپی و به عنوان شاخص برتر انتخاب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Principle of Maximum Entropy in Determining the Optimum Number of Surface Water Quality Monitoring Stations

نویسندگان [English]

  • Marzieh Derikvandi 1
  • Hossein Zeinivand 2
  • Nasser Tahmasebipour 2
  • Ali Haghizadeh 2
1 MSc student, Department of Watershed Management Engineering, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
2 Associate Prof. Department of Watershed Management Engineering, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
چکیده [English]

Optimization of monitoring network is a decision-making process through which, the best combination of existing stations is selected. Regarding the economic considerations and reducing monitoring costs, optimization approach in this study is to reduce the number of surface water quality monitoring stations in Dez basin in Lorestan province. In this regard, using an algorithm based on the principle of maximum entropy and water quality index of SO44, Cl, HCO3, K, Na, Ca, Mg, pH, TH, SAR, EC and TDS parameters, the optimization procedure was done for 18 existing monitoring stations during the statistical period of 1387-1396 (2008-2017). First, the average rank of each station in the mentioned 10 statistical years was obtained, then some models were proposed for the network entropy according to the number of stations and year. After fitting the best model, the results showed that based on SO4, Cl, HCO3, K, Na, Ca, Mg, pH, TH, TD, SAR and EC parameters, the number of sufficient stations as surface water quality monitoring network in the study area were 9, 9, 7, 11, 11, 11, 10, 7, 10, 10, 10, and 11, respectively. In order to validate the proposed network, by comparing the entropy of the proposed network with the entropy of random networks with the number of stations based on the 12 mentioned parameters in each year, the efficiency of the selected network was confirmed. Also, among the 12 evaluated quality indicators, chloride showed the highest entropy of weight. Therefore, chloride had the maximum entropy and was selected as the superior index.

کلیدواژه‌ها [English]

  • Monitoring network
  • Temporal spatial modeling
  • Quality index
  • Algorithm
Ahmadi, F., Radmanesh, F., Parham, Gh. and Mirabasi Najafabadi, R., (2017). Application of Archimedean joint functions in flood frequency analysis of Dez catchment, Iranian journal of soil and water, 48(3).
Akbarzadeh, M. and Ghahraman, B., (2013). A combined strategy of Entropy and spatio-temporal Kriging in determining optimal network for ground water quality monitoring of Mashhad basin. Journal of Water and Soil 27(3).613-629
Akbarzadeh, M., Ghahraman, B. and Davari, K., (2015). Optimization of Mashhad Aquifer Ground water Quality Monitoring Network using Spatio- Temporal Modeling, Iran water Resources Research, 12(1), 133-144
Alian Nejad, M., Bakhtiari, B. And Gaderi, K., (2016). Comparison of Monte Carlo methods and hybrid fso logic PSO method, 25(13), 105-112
Amiri, V., Rezaei, M., Sohrabi, N., (2014). Groundwater quality assessment using entropy Weighted water quality index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 72 (9), 3479–3490
Chadalavad, S., Datta, B. And Naidu, R., (2011). Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site. Journal of environment monitoring and assessment.173 (1-4), 929-940
Dimitris, M. and Metaxa, G., (2006). Geostatiscal analysis of spatial variability of rainfall and optimal design of a rainguage network, Water resources management, 10, 107-127
Fatahi, H., Abdi, H., Khosravi, F. and Karimi, SH., (2018). Comparison of point estimation methods and Monte carlo simulations in solving probabilistic optimal power dissipation in terms of renewable source uncertainties, 9(3), 72-85
Guey-Shin, S., Bai-You, C., Chi TC, Pei HY. Tsun KC., (2011). Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. International Journal of Environmental Resources and Public Health 8: 1084-1109
Kar, B., Ehodgson, M., (2008). A GIS-Based Model to Determine Site Suitability of Emergency Evacuation Shelters. Transactions in GIS 12(2):227-248.
Kim, Y., Chung, Eun-Sung, Jun, Sang-Mook, Kim, Sang UG., (2013). Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resources, Conservation and Recycling, (73): 23-32.
Karamoz, M., Falahi, M. And Nazif, S., (2010). Spatial Precipitation Analysis: Comparison of Kriging Methods with Conventional Methods, Iranian water Resources Research Quarterly, 6(1).
Li, P., Qian, H., Wu, J., (2010). Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. J. Chem. 7 (S1), S209–S216
Mogheir, De lima, JLMP and Singh VP., (2009). Entropy and Multi-Objective based approach for ground water quality monitoring network assessment and redesign, Journal of water Resources Management. 23(8):1603-1620
Pazirandeh, A., Shakorian, A., (2005). Optimization of neutron beam energy in neutron therapy with boron by Monte Carlo method, Iranian Journal of Physics Research, 6(2). 
Shannon, C. E., (1948). A Mathematical Theory of Communication. The Bell System Technical Journal. 27(4): 623-656
Singh, K.R., Ajays, R.D., Kumar, K.B., (2019). An investigation on water quality variability and identification of ideal monitoring locations by using entropy based disorder indices. The total of environment 647; 1444-1455
Singh, VP., (2013). Entropy Theory and its Application in Environmental and water Engineering, John Wiley and sons.
Wu JP, Li H, Qian M., (2011). Groundwater quality in Jingyuan County, a semi-humid area in Northwest China. E-Journal of Chemistry 8: 787-793.
Yeh, H.C., Chen, Y.C., Wei, C. And Chen, R.H., (2011). Entropy kriging approach to rain fall network design. Journal of paddy and water environment 9(3):343-355
Yufeng S, Fengxiang J., (2009). Landslide Stability Analysis Based on Generalized Information Entropy. International Conference on Environmental Science and Information Application Technology: 83–85.