مدلسازی سرعت و شیب هیدرولیکی در جریان‌های غیردارسی با استفاده از مفهوم مشتقات کسری سازگار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

3 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران.

چکیده

با افزایش سرعت جریان و عدد رینولدز در محیط­های متخلخل درشت­دانه و نقض قانون دارسی، تجزیه و تحلیل جریان بر اساس روابط غیرخطی شیب هیدرولیکی و سرعت جریان صورت می­گیرد. لذا بررسی هر چه دقیق­تر روابط غیرخطی امری ضروری می­باشد. در این تحقیق، از مشتقات سازگار[1] جهت بررسی رابطه شیب هیدرولیکی و سرعت جریان در شرایط جریان آشفته­ی کاملاً توسعه یافته در پدیده­ی جریان­های غیردارسی در محیط متخلخل استفاده گردیده است. هدف از تحقیق حاضر مطالعه­ی تاثیر مشتقات سازگار بر بهبود ارتباط بین سرعت جریان و شیب هیدرولیکی و بررسی عملکرد مرتبه کسری مدل است. لذا با تعیین بازه قابل قبول برای مرتبه کسری مدل، مدلی غیر­خطی بر مبنای مشتقات سازگار از معادله افت فشار ایزباش برای جریان آشفته کاملاً توسعه یافته، ارائه و به صورت تحلیلی حل شد و پارامترهای مدل پیشنهادی با استفاده از تجزیه و تحلیل داده­های آزمایشگاهی تعیین گردید و مقادیر بهینه پارامترهای مدل شامل ضریب a و مرتبه مشتق کسری α که در این تحقیق، در دامنه صفر تا دو قابل تغییر است، برای هر مجموعه داده آزمایشگاهی محاسبه شدند. نتایج به­دست آمده با داده­های آزمایشگاهی و حل تحلیلی معادله ایزباش مورد مقایسه قرار گرفت و تطابق مناسبی با داده­های آزمایشگاهی مربوط به جریان­های غیردارسی حاصل شد. همچنین با استفاده از تحلیل ابعادی، عدد رینولدز جریان به عنوان پارامتر موثر بر ضریب α معرفی گردید و ارتباط مناسبی میان مرتبه کسری α و عدد رینولدز جریان مشاهده شد که نشان دهنده مفهوم هیدرولیکی مرتبه کسری مدل می­باشد. مطابق تحقیق حاضر، مرتبه کسری α  فقط یک ضریب برازشی نبوده و بیانگر مفهوم فیزیکی می­باشد.



[1] Conformable derivative

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Velocity and Hydraulic Gradient in Non-Darcian Flows Using the Concept of Conformable Fractional Derivatives

نویسندگان [English]

  • Nooshin Eslahi 1
  • Alireza Vatankhah 2
  • Mohammad Sedghi Asl 3
1 Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran.
2 Associate Professor, Department of Irrigation and Reclamation Engineering, University College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran
3 Associate Professor, Soil Science Department, College of Agriculture, Yasouj University, P.O.BOX: 353, Yasouj, 75918-74831, Iran.
چکیده [English]

The increase of flow velocity and Reynolds number in coarse porous media and the subsequent violation of Darcy's law, force to analyze the flow based on nonlinear relations of hydraulic slope and flow velocity. So, it is necessary to study nonlinear relationships more accurately. The purpose of this study was to investigate the performance of fractional-order model and the effect of conformable derivatives on improving the relationship between flow velocity and hydraulic gradient. Therefore, by determining the acceptable range for the fractional-order model, a nonlinear model based on conformable derivatives of the Izbash equation for the fully developed turbulent flow was presented and solved analytically and the parameters of the proposed model were determined using laboratory data analysis. The optimal values of the model parameters including coefficient a and the order of fractional derivative α, which can be varied in the range of (0-2), were calculated for each laboratory data set. The results were compared with the experimental data and the analytical solution of Izbash equation and a good agreement was found to the non-Darcian flow laboratory data. Moreover, using dimensional analysis method, Reynolds number was introduced as an effective factor on α coefficient and a suitable relationship was observed between the order of fractional derivative α and Reynolds number indicating the hydraulic concept of fractional-order model. According to the present study, the fractional order α is not only a fitting coefficient, but it represents a physical concept.

کلیدواژه‌ها [English]

  • Conformable derivatives
  • fractional order
  • fully developed turbulent flow
  • non-darcian flow
  • analytical solution
Ahmed, N. and Sunada, D. K. (1969). Non-linear Flow in Porous Media. Journal of Hydraulic Division ASCE, 95(6), 1847.
Barr, D. W. (2001). Turbulent Flow through Porous Media. Ground Water. 39(5), 646-650.
Birgani, O. T. Chandok, S. Dedovic, N., and Radenovic, S. (2019). A note on some recent results of the conformable fractional derivative. Advances in the Theory of Nonlinear Analysis and its Application, 3(1), 11-17.
Bordier, C. Zimmer, D. (2000). Drainage equations and non-Darcian modeling in coarse porous media or geosynthetic materials. Journal of Hydrology, 228 (3-4), 174–187.
Dong, X. Bai, Z. and Zhang, S. (2017). Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Boundary Value Problems, 2017(1), 1-15.
Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48(2), 89-94.
Forchheimer, P. (1901). Wasserbewegung durch boden. Zeit. Ver. Deutsch, Ing., 45, 1782-1788.
Hansen, D. (1992). The Behavior of Flow through Rockfill Dams. Ph.D. dissertation, Department of Civil Engineering, University of Ottawa, Ottawa, Ontario.
Herrera, N. M. and Felton, G. K. (1991). Hydraulics of flow through a rockhll dam using sediment-free water. Transactions of the ASAE, 34(3), 871-0875.
Izbash, S. (1931). O Filtracii kropnozernstom materiale. Leningrad: USSR.
Khalil, R. Al Horani, M. Yousef, A. and Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65-70.
Kovacs, G. (1977) Developments in water science. Seepage Hydraulics, Elsevier.
Li, B. Garga, V. K. and Davies, M. H. (1998). Relationships for non-Darcy flow in rockfill. Journal of Hydraulic Engineering, 124(2), 206-212.
Martins, R. (1990). Turbulent seepage flow through rockfill structures. Journal of water power dam construction 90, 41–45.
McCorquodale J. A., Hannoura A., and Nasser M. S. (1978). Hydraulic conductivity of rockfill. Journal of Hydraulic Research, 16(2), 123-137.
Parkin, A.K. (1963). Rockfill dams with inbuilt spillways: Stability characteristics. Water Research Foundation of Australia, Melbourne.
Sarkhosh, P. Samani, J. M. V. and Mazaheri, M. (2017). A one-dimensional flood routing model for rockfill dams considering exit height. Proceedings of the Institution of Civil Engineers-Water Management, 171(1), 42-51.
Sedghi-Asl, M. and Rahimi, H. (2011). Adoption of Manning's equation to 1D non-Darcy flow problems. Journal of Hydraulic Research, 49(6), 814-817.
Sedghi-Asl, M. Rahimi, H. and Salehi, R. (2014). Non-Darcy flow of water through a packed column test. Transport in porous media, 101(2), 215-227.
Soni, J. P. Islam, N. and Basak, P. (1978). An experimental evaluation of non-Darcian flow in porous media. Journal of Hydrology, 38(3-4), 231-241.
Stephenson, D. (1979). Rockfill in hydraulic engineering. Elsevier Scientific, Amsterdam.
Venkataraman, P. and Rao, P. R. M. (1998). Darcian, transitional, and turbulent flow through porous media. Journal of hydraulic engineering, 124(8), 840-846.
Ward, J. C. (1964). Turbulent flow in porous media. Journal of the hydraulics division, 90(5), 1-12.
Watanabe, H. (1982). Comment on Izbash's equation. Journal of Hydrology, 58(3-4), 389-397.
Wilkins, J. K. (1956). Flow of water through rockfill and its application to the design of dams. Proceedings of the 2nd Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering, Canterbury University College, Christchurch, New Zealand, pp. 141-149.
Zeng, Z. and Grigg, R. (2006). A criterion for non-Darcy flow in porous media. Transport in Porous Media. 63(1), 57-69.
Zhou, H. W. and Yang, S. (2018). Fractional derivative approach to non-Darcian flow in porous media. Journal of hydrology, 566, 910-918.