تاثیر انواع بیوچار غنی شده بر قابلیت استفاده و توزیع شکل‌های معدنی فسفر در خاک‌ شور اطراف دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

به­منظور کاهش مشکلات مصرف بیوچار در خاک­های آهکی، با تغییر خواص سطحی بیوچار سیب وانگور به­وسیله انواع اسیدها، در یک آزمایش انکوباسیون فاکتوریل در قالب طرح کامل تصادفی با 6 تیمار شامل (بیوچار غنی شده با اسیدفسفریک-خاک فسفات (BC-H3PO4-RP)، اسید هیدروکلریک-خاک فسفات (BC-HCl-RP) و خاک فسفات (BC-RP)، بیوچار معمولی (BC)، کود فسفاته (TSP) و شاهد (Cont)) و 2 نوع خاک آهکی با قابلیت هدایت الکتریکی مختلف (2=S1 و 15= S2 دسی­زیمنس بر متر)، تاثیر انواع بیوچار غنی شده بر توزیع اشکال معدنی فسفر در خاک­های شور اطراف دریاچه ارومیه بررسی شد. فسفر اولسن، pH و اجزاء فسفر معدنی در زمان­های 7، 30 و 60 روز انکوباسیون اندازه­گیری و از لحاظ آماری تحلیل گردید. بر اساس نتایج، تیمارهای BC-HCl-RP و BC-H3PO4-RP به­طور متوسط pH خاک S1 و S2 را به­ترتیب 5/0 و 1 واحد کاهش دادند. تیمارهای BC-H3PO4-RP و BC-HCl-RP فسفر اولسن خاک S1 را از 7/6 میلی­گرم در کیلوگرم خاک به­ترتیب به 3/57 و 5/55 و در خاک S2 از 4/7 به 3/71 و 62 میلی­گرم در کیلوگرم خاک افزایش دادند. بیوچارهای غنی شده توزیع و مقدار اشکال فسفر معدنی خاک­ها را به­طور معنی­دار تغییر دادند. به­طوریکه تیمارهای BC-H3PO4-RP و  BC-HCl-R مقدار دی­کلسیم فسفات خاک S1 را به­ترتیب 9/2 و 6/2 برابر و خاک S2 را به­ترتیب 06/1 و 97/0 برابر افزایش دادند. در مقابل مقادیر اکتاکلسیم­فسفات، فسفات­های­آلومینیوم و آپاتیت به­طور معنی­دار کاهش یافت. فسفر اولسن با دی کلسیم فسفات، آپاتیت و فسفر پیوندشده با آهن همبستگی معنی­دار داشت و احتمالا در عصاره­گیری فسفر اولسن، فـسفر از این اجزاء معدنی آزاد می­شود. بنابراین می­توان گفت استفاده از بیوچار غنی­شده باعث می­شود فسفر برای مدت طولانی در فاز لبایل و قابل جذب برای گیاه باقی بماند. از اینرو می­تواند به بهبود تغذیه فسفرگیاه، کاهش تنش شوری و رفع مسائل مصرف بیوچار معمولی در این خاک­ها کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Enriched Biochars on the Availability and Fractions of Phosphorus in the Saline Soils of Lake Urmia Basin

نویسندگان [English]

  • Roghayeh Mousavi 1
  • MirHassan Rasouli-Sadaghiani 1
  • Ebrahim Sepehr 1
  • Mohsen Barin 1
  • Maryam Khezri 2
1 Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

In order to reduce the problems of biochar application in calcareous soils, by changing the surface properties of apple-grape biochar by phosphoric and chloric acids, the effects of enriched biochars on the fraction of phosphorus (P) forms in saline soils of Lake Urmia was investigated as a factorial incubation experiment in a completely randomized design with two factors: fertilizer treatments (control (Cont), biochar (BC), phosphate fertilizer (TSP), Biochar-Rock phosphate (BC-RP) and enriched-biochar (EB) types (BC-HCl-RP and BC-H3PO4-RP)) and 2 calcareous soils with different EC (2 and 15 dSm-1). Olsen-P, pH and different forms of inorganic P were determined by sequential extraction method at 7, 30 and 60 days of incubation. The results showed that on average, the BC-HCl-RP and BC-H3PO4-RP treatments reduced the pH of S1and S2 soils, 0.5 and 1 unit, respectively. BC-H3PO4-RP and BC-HCl-RP treatments increased Olsen-P of S1 soil from 6.7 to 57.5 and 55.5 mgkg-1 and soil S2 from 7.4 mgkg-1 to 71.3 and 62 mgkg-1, respectively. Enriched biochars significantly (p <0.01) altered the distribution and amount of inorganic P forms. Thus, BC-H3PO4-RP and BC-HCl-RP treatments increased the amount of Ca2-P fraction in the S1 soil by 2.9 and 2.6 times and in the S2 soils by 1.06 and 0.97 times, respectively. However, the amounts of Ca8-P, Al –P and Ca10-P fractions reduced significantly. Olsen-P positively and significantly correlated with Ca2-P, Fe-P, and Ca10-P fractions and positively but not significantly with the Al-P fraction, suggesting that in the extraction of Olsen-P, phosphorus is released from these mineral fractions. In general, EBs application may cause P to remain in the plant-available forms over the time. Therefore, it can help to improve P nutrition, reduce salinity stress, and eliminate the common problems of biochar application in these soils.

کلیدواژه‌ها [English]

  • inorganic phosphorus fractions
  • phosphorus availability
  • saline soils
  • biochar
  • enriched-biochar
Abolfazli, F., Forghani, A., & Norouzi, M. (2012). Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. Journal of Soil Science and Plant Nutrition12(2), 349-362.‏
Adhami, A. Chafteh, M. Ronaghi, A. & Karimian, N. (2005). Investigating different forms of phosphorus in several selected lime soils of the province. Proceedings of the 9th Iranian Soil Science Congress.
Agblevor, F. A., Beis, S., Kim, S. S., Tarrant, R., & Mante, N. O. (2010). Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Management30(2), 298-307.‏
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science201(5), 368-378.‏
Bell, L. C., & Black, C. A. (1970). Transformation of Dibasic Calcium Phosphate Dihydrate and Octacalcium Phosphate in Slightly Acid and Alkaline Soils 1. Soil Science Society of America Journal34(4), 583-587.‏
Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology107, 419-428.‏
Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal2014.‏
Chapman, H. D. (1965). Cation-exchange capacity 1. Methods of Soil Analysis. Part 2. Chemical and microbiological properties, (methodsofsoilanb), 891-901.‏
Chia, C. H., Singh, B. P., Joseph, S., Graber, E. R., & Munroe, P. (2014). Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis108, 26-34.‏
Chimdi, A., Esala, M., & Ylivainio, K. (2014). Sequential fractionation patterns of soil phosphorus collected from different land use systems of Dire Inchine District, West Shawa Zone, Ethiopia. American-Eurasian Journal of Scientific Research9(3), 51-57.‏
Cui, H. J., Wang, M. K., Fu, M. L., & Ci, E. (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of Soils and Sediments11(7), 1135.‏
Dahlawi, S., Naeem, A., Rengel, Z., & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of The Total Environment625, 320-335.‏
Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I., & Condron, L. M. (2014). Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils50(1), 169-178.‏
Gerdelidani, A. F., & and Mirseyed Hosseini, H. M. (2018). Effects of sugar cane bagasse biochar and spent mushroom compost on phosphorus fractionation in calcareous soils. Soil Research56(2), 136-144.‏
Guo, F., Yost, R. S., Hue, N. V., Evensen, C. I., & Silva, J. A. (2000). Changes in phosphorus fractions in soils under intensive plant growth. Soil Science Society of America Journal64(5), 1681-1689.‏
Halford. I. C. R. (1979). Evaluation of Soil Phosphate Buffering Indices, Australian Journal Soil Research. 17. 495-504 .
Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J. P. & Plassard, C. (2011). Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail?. Plant and Soil348(1-2), 29.‏
Hong, C., & Lu, S. (2018). Does biochar affect the availability and chemical fractionation of phosphate in soils?. Environmental Science and Pollution Research25(9), 8725-8734.‏
Iyamuremye, F., Dick, R. P., & Baham, J. (1996). Organic amendments and phosphorus dynamics: I. Phosphorus chemistry and sorption. Soil Science161(7), 426-435.‏
Jalali, M., & Tabar, S. S. (2011). Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Journal of Plant Nutrition and Soil Science174(4), 523-531.‏
Jun, W. A. N. G., Wen-Zhao, L. I. U., Han-Feng, M. U., & Ting-Hui, D. A. N. G. (2010). Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application. Pedosphere20(3), 304-310.‏
Khorasgani, M. N., Shariatmadari, H., & Atarodi, B. (2009). Interrelation of Inorganic Phosphorus Fractions and Sorghum‐Available Phosphorus in Calcareous Soils of Southern Khorasan. Communications in Soil Science and Plant Analysis40(15-16), 2460-2473.‏
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality41(4), 990-1000.‏
Klute, A. (1986). Methods of soil analysis, part 1 physical and mineralogical methods, Arnold Klute ed. Agronomy. 9, (part 1).‏
Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution23(2), 95-103.‏
Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., ... & Pan, G. (2015). Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2‐year field experiment. Journal of the Science of Food and Agriculture95(6), 1321-1327.‏
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for environmental management (pp. 33-46). Routledge.‏
Mahmoud, E., Ibrahim, M., Abd El-Rahman, L., & Khader, A. (2019). Effects of Biochar and Phosphorus Fertilizers on Phosphorus Fractions, Wheat Yield and Microbial Biomass Carbon in Vertic Torrifluvents. Communications in Soil Science and Plant Analysis50(3), 362-372.‏
Murphy, J. A. M. E. S., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta27, 31-36.‏
Nelson, D. W., & Sommers, L. (1982). Total carbon, organic carbon, and organic matter 1. Methods of Soil analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), 539-579.‏
Nelson, R.E. )1982(. Carbonate and gypsum. In : Page A.L., Miller R.H. , Keeney D.R. (eds), Methods of Soil Analysis. American  Society of Agronomy, Madis, WI, USA. pp. 181–197
Nugues, M. M., & Roberts, C. M. (2003). Coral mortality and interaction with algae in relation to sedimentation. Coral Reefs22(4), 507-516.‏
Opala, P. A., Okalebo, J. R., & Othieno, C. O. (2012). Effects of organic and inorganic materials on soil acidity and phosphorus availability in a soil incubation study. ISRN Agronomy2012.‏
Pierzynski, G. M., Logan, T. J., & Traina, S. J. (1990). Phosphorus chemistry and mineralogy in excessively fertilized soils: Solubility equilibria. Soil Science Society of America Journal54(6), 1589-1595.‏
Qadir, M., Schubert, S., Ghafoor, A., & Murtaza, G. (2001). Amelioration strategies for sodic soils: a review. Land Degradation & Development12(4), 357-386.‏
Samadi, A., & Gilkes, R. J. (1998). Forms of phosphorus in virgin and fertilised calcareous soils of Western Australia. Soil Research36(4), 585-602.‏
Scherer, H., & Sharma, S. (2002). Phosphorus fractions and phosphorus delivery potential of a luvisol derived from loess amended with organic materials. Biology and Fertility of Soils35(6), 414-419.‏
Shariatmadari, H., Shirvani, M., & Dehghan, R. A. (2007). Availability of organic and inorganic phosphorus fractions to wheat in toposequences of calcareous soils. Communications in Soil Science and Plant Analysis38(19-20), 2601-2617.‏
Sharpley, A. N., Smith, S. J., & Bain, W. R. (1993). Nitrogen and phosphorus fate from long-term poultry litter applications to Oklahoma soils. Soil Science Society of America Journal57(4), 1131-1137.‏
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., ... & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant physiology156(3), 997-1005.‏
Sohi, S., Loez-Capel, E., Krull, E., & Bol, R. (2009). Biochar’s roles in soil and climate change: A review of research needs. CSIRO Land and Water Science Report5(09), 1-57.‏
Song, K., Winters, C., Xenopoulos, M. A., Marsalek, J., & Frost, P. C. (2017). Phosphorus cycling in urban aquatic ecosystems: connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry132(1-2), 203-212.‏
Sui, Y., Thompson, M. L., & Shang, C. (1999). Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Science Society of America Journal63(5), 1174-1180.‏
Uygur, V., & Karabatak, I. (2009). The effect of organic amendments on mineral phosphate fractions in calcareous soils. Journal of Plant Nutrition and Soil Science172(3), 336-345.‏
Valzano, F. P., Greene, R. S. B., Murphy, B. W., Rengasamy, P., & Jarwal, S. D. (2001). Effects of gypsum and stubble retention on the chemical and physical properties of a sodic grey Vertosol in western Victoria. Soil Research39(6), 1333-1347.‏
Wang, T., Camps-Arbestain, M., Hedley, M., & Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil357(1-2), 173-187.‏
Wong, V. N., Dalal, R. C., & Greene, R. S. (2010). Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Applied Soil Ecology41(1), 29-40.‏
Xu, G., Zhang, Y., Sun, J., & Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment568, 910-915.‏
Yang, X., & Post, W. M. (2011). Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences8(10), 2907-2916.‏
Zhang, T. Q., & MacKenzie, A. F. (1997). Changes of phosphorous fractions under continuous corn production in a temperate clay soil. Plant and Soil192(1), 133-139.‏