مدل بهینه مدیریت بهره‌برداری شبکه آبیاری با هدف سود بیشینه (مطالعه موردی: شبکه آبیاری قزوین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

با توجه به محدودیت منابع آب و ارزش آن در کشاورزی، تعیین الگوی کشت بهینه محصولات کشاورزی و برنامه‌ریزی آبیاری در شرایط کم­آبی حاکم بر حوضه‌های آبریز کشور از اهمیت بالایی برخوردار است. بنابراین تدوین و توسعه مدل الگوی بهینه کشت که قابلیت انعطاف‌پذیری در شرایط ترسالی و خشک‌سالی را دارا باشد، ضرورت می­یابد. هدف تحقیق تهیه مدلی است که تحت شرایط مختلف منابع آب بهترین برنامه آبیاری و سطح زیر کشت را برای بهره‌برداری شبکه آبیاری ارائه دهد. مدل پس از دریافت اطلاعات اولیه (گیاه، خاک و هواشناسی) و سناریوهای مختلف آبیاری و کم­آبیاری با اتصال به مدل رشد گیاهی آکواکراپ، عملکرد محصولات را تحت سناریوهای تعریف شده محاسبه می‌کند. سناریویی که بیشینه بهره‌وری اقتصادی را دارا است به عنوان برنامه‌ریزی آبیاری تعیین می‌گردد و با اتصال به ACO الگوی کشت بهینه برای حجم‌های مختلف آب سطحی در دسترس با هدف بیشینه­سازی سود خالص تعیین می‌گردد. الگوی کشت بهینه  برای کل محصولات مورد کشت شبکه آبیاری قزوین در چهار حالت مختلف امکان تحویل آب (100%، 80%، 75% و 70%) برای سال زراعی 94-93 جهت بررسی کارایی مدل انجام شد. نتایج نشان داد در حالتی­که سال نرمال و مقدار آب تحویلی به شبکه برابر متوسط دراز مدت (گزینه 100%) باشد، بیشترین مساحت به کشت گندم اختصاص می‌یابد (10740) و مساحت بدون کشت آبی حداقل خواهد بود. در حالتی­که 70 درصد مقدار متوسط دراز مدت سالانه تأمین شود سطح زیر کشت گندم  3000 هکتار خواهد بود و حدود 15000هکتار از شبکه به ناچار بایستی به صورت دیم و یا بدون کشت آبی اداره شود. نتایج نشان داد که برنامه تدوین­شده با توانایی بالا و انعطاف‌پذیری زیاد برای انواع شرایط موجود، قادر به تعیین الگوی بهینه و بیشینه­کردن سود شبکه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Model of Irrigation Network Operational Management to Maximize Profit (Case Study: Ghazvin Irrigation Network)

نویسندگان [English]

  • Maryam Azizabadi Farahani 1
  • Farhad Mirzaei 2
1 Department of Irrigation and Reproduction Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
2 Associate Professor, Department of Irrigation and Reproduction Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Considering the limitation of water resources and their value in agriculture, determining the optimal crop cultivation pattern and irrigation planning in low water conditions in the country's catchments is of great importance. Therefore, it is necessary to develop an optimal cultivation model to be flexible in wet and dry conditions. The purpose of this study is to develop a model for offering the best program for irrigation and cultivation area for network operation under different conditions of water resources. After receiving basic information (plant, soil and meteorology) and various irrigation and deficit irrigation scenarios by connecting to the plant growth model (Aqucrop), the model calculates crop yield under defined scenarios. The scenario with the highest economic efficiency is determined as irrigation planning and by connecting to Ant Colony Optimization (ACO), the optimal cultivation pattern for different volumes of available surface water is determined with the aim of maximizing net profit. The optimal cultivation pattern for all crops grown in Qazvin irrigation network in four different modes of water delivery (100%, 80%, 75% and 70%) was performed for 93-94 crop year to evaluate the efficiency of model. The results showed when the year is normal and the amount of water delivered to the network is equal to the long-term average (100% scenario), the largest area is allocated to wheat cultivation (10740) and the dryland will be the least. In the case of 70% of average annual long-term amount to be provided, the area under wheat cultivation will be 3,000 hectares, and about 15,000 hectares of the network must be managed dryland or without irrigated cultivation. The results showed that the developed program with high capability and high flexibility for a variety of existing conditions is able to determine the optimal pattern and maximize network profits.

کلیدواژه‌ها [English]

  • management
  • economic productivity
  • ACO
  • Optimal cultivation pattern
Afshar, A., Massoumi, F. and Mariño, M.A. (2015). State of the art review of Ant Colony Optimization applications in water resource management, Journal of Water Resources Management, 29(11), 3891-3904, doi:10.1007/s11269-015-1016-9.
Amiri, E., Khorsand, A., Daneshian, J. and Yousefi, M. (2017). Prediction biomass and grain yield canola under different water regimes and fertilizer using AquaCrop model. Journal of Science and Irrigation Engineering, 1(41), 57-72. (In Farsi)
Charnes, A. and Cooper, W. (2014). An application of linear programming model for planning dry-seasonal irrigation system. Trends in Applied Sciences Research( vol 5). ( pp.64-70).
Delavar, D. Morid, S. andMoghadasi, M. (2015). Optimization of Water Allocation in Irrigation Networks Considering Water Quantity and Quality Constrains, Case Study: Zayandehroud Irrigation Networks. Iran-Water ResourcesResearch. 11(9): 83-96.(In Farsi)
Doorenbos, J. and Kassam, A.H. (1979). Yieldresponse to water. Irrigation And Drainage Paper no.33. FAO, Rome.
Farhadi Bansoole, B.(1998). Effects of deficit irrigation on Barley yield in Karaj region and determination of production function. M.S .dissertation, University of Tehran. pp. 120. (In Farsi)
García-Vila, M., Fereres, E., Mateos, L., Orgaz, F. and Steduto, P. (2009). Deficit IrrigationOptimization of Cotton withAquaCrop. Journal of Agron, (101),  477–487.
Ghahraman, B. and Sepaskhah, A. R. (1997). Optimum deficit irrigation of cotton and potato fields in a semi-arid region. Iran. Journal of  Sci. Technol, 21(4), 395-405.
Golkar, H.R. (1998). Determination of production of wheat and study of the effect of water stress on yield in Karaj region. M.S .dissertation, University of Tehran. pp. 122. (In Farsi)
Hanks, R. J. (1983). Yield and Water-Use Relationships. In:Lange, O. L., Kappen, L. and Schulze, E. D.(Eds.) Ecological Studies. Analysis and Synthesis. (Vol. 19). Water and Plant Life. Springer-Verlag.Berlin.
Heng, L.K., Evett, S.R., Howell, T.A. and Hsiao, T.C. (2009). Calibration and testing of FAO AquaCrop model for maize in several locations. Journal of Agron, (101), 488–498.
Kanooni, A., Monem, M.J. (2016). Allocation and water delivery scheduling optimization in irrigation networks. Journal of Irrigation and Drainage,1(10): 12-23.(In Farsi)
Meyer, S. J., Hubbard, K. G. and Wilhite, D. A. (1993) . A crop specific drought index for corn: I, Model development and validation. Journal of Agron, (85), 388-395.
Mirlatifi, S.M.  and Sotoodenia, A.(2002). Simulation the impact of irrigation on Corn yield. Final report of the applied research plan of the deputy of research of Iranian Resources Management Organization Ministry of Energy. pp . 221. (In Farsi)
Mirzaie, Sh. Zakerinia, M. Sharifan, H. and Shahabifar, M. (2015). The Determination of Optimal Crop Pattern with Max-Min Ant System method (Case Study: Golestan Dam Irrigation and Drainage network). Iranian Journal of Irrigation and Drainage, 1(9):66-74. (In Farsi)
Moghaddasi,M., Morid,S., Araghinejad,S. and Agha Alikhani,M. (2010). Assessment of irrigation water allocation based on optimization and equitable water reduction approaches to reduce agricultural drought losses: The 1999 drought in the ZayandehRud irrigation system (IRAN). Irrigation and Drainage. 59.4: 377-387(In Farsi)
Mushtagh, Sh. and Moghaddasi, M. (2011). Evaluating the potentials of deficit irrigation as an adaptive response to climate change and environmental demand. Environmental Science and Policy, Australia College of Agriculture 14(2):1139-1150.
Nguyen, D.C.H., Maier, H.R., Dandy, G.C. and Ascough II, J.C. (2016). Framework for
computationally efficient optimal crop and water allocation using ant colony optimization,
Environmental Modelling & Software,( 76), 37-53, doi:10.1016/j.envsoft.2015.11.003
Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. (2009). AquaCrop–the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Journal of Agron ,(101), 438-447.
Rahimikhoob, H., Sotoodehnia, A. and Massahbavani, A.R. (2014). Calibration and evaluation of AquaCrop for Maize in Qazvin Region. Iranian Journal of lrrigation and Drainage,1(8), 108-115. (In Farsi)
Ramezani Etedali, h., Ababaei, B. and Kaviani, A. (2017) The effect of increasing CO constraction on yield, transpiration and water use efficiency of main cereals in Ghazvin. Journal of Water Resources Engineering, (11), 39-48. (In Farsi)
Rao, N., Sarma, P. and Chander, S. (1988). Irrigation scheduling under a limited water supply,
Agricultural Water Management, 15 (2), 165-175, doi:10.1016/0378-3774(88)90109-6
Salemi, H. R., Soom, M. A. M., Lee, T. S., Mousavi, S. F., Ganji, A. and Yusoff, M. K. (2011). Applicationof AquaCrop model in deficit irrigation management of winter wheat in arid region. African Journal  Agric.Res, (610) , 2204-2215.
Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Journal of Agron . (101), 426–437.
Tanner, C. B. and Sinclair, T. R. (1983). Efficient Water Use in Crop Production: Research or Re-Search? In:Taylor, H. M., Jordan, W. R. and Sinclair, T. R. (Eds.) Limitations to Efficient Water Use in Crop Production. ASA, CSSA and SSSA. Madison. WI.
Todorovic, M., Albrizio, R., Zivotic, L., Therese Abi Saab, M,. Stockle, C. and Steduto, P.  (2009). Assessment of AquaCrop, CropSyst and WOFOST Models in the simulations of Sinflower growth under different water regimes. Journal of Agron. (101) ,509-521.
Vafaienejhad, A., Yousefzade, J., Yousefi, H. and Mohammadi Varzane, N. (2014). Using GIS and linear programming to manage water distribution in irrigation Networks (Case Study: Downstream Lands of Aqchay Dam). Journal of Ecohydrology, (2), 123-132. (In Farsi)
Vivekanandan, N., Viswanathn, K., and Sanjeev, G. (2015). Optimization of cropping pattern using goal programming approach, OPSEARCH, (vol3). (pp.25)