بررسی عدم‌قطعیت مدل‌های داده‌مبنا در پیش‌بینی دبی ماهانه حبله‌رود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

2 گروه مهندسی آب، دانشکده علوم کشاورزی دانشگاه گیلان، رشت، ایران

3 مربی- گروه مهندسی آب - دانشگاه گیلان

چکیده

مدیریت مناسب حوضه‌های آبریز نیازمند در اختیار داشتن پیش‌بینی‌های دقیق و قابل اطمینان از دبی رودخانه‌هاست. در سالیان اخیر، مدل‌های داده‌مبنا و به‌ویژه مدل‌های مبتنی بر هوش مصنوعی، در زمینه‌های مختلفِ مرتبط با منابع آب با موفقیت مورد استفاده قرار گرفته‌اند. با این وجود، تحلیل عدم‌قطعیت این مدل‌ها کمتر مورد توجه قرار گرفته است. در مطالعه حاضر، عدم‌قطعیت خروجی پنج مدل مبتنی بر هوش مصنوعی شامل مدل‌هایی از نوع ماژولار، PCA، TLRN، ANFIS و SVM در پیش‌بینی دبی ماهانه حبله‌رود، با استفاده از کمیت‌های 95PPU، p-factor و d-factor مورد بررسی قرار گرفته است. با استفاده از داده‌های ثبت‌شده از متغیرهای هواشناسی و دبی طی سال‌های 2012-1998 در حوضه آبریز حبله‌رود در شرق استان تهران، ساختارهای متفاوتی از مدل‌ها مورد آموزش و آزمون قرار گرفتند. مقادیر نهاییِ p-factor و d-factor برای هر کدام از پنج مدلِ مورد بررسی محاسبه شد. نتایج نشان داد SVM با p-factor نهاییِ معادل با 82 درصد در مرحله آزمون، قابل‌اعتمادترین مدل برای پیش‌بینی دبی ماهانه در حوضه مورد بررسی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Uncertainty of Data-Based Models in Forecasting Monthly Flow of the Hablehroud River

نویسندگان [English]

  • Jaber Salehpoor Laghani 1
  • Afhsin Ashrafzadeh 2
  • Sayed Ali Moussavi 3
1 Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Lecturer, Department of Water Engineering, University of Guilan
چکیده [English]

Accurate and reliable forecasts of river flow are required for proper management of watershed systems. In recent years, data-driven models and especially artificial intelligent based models have been successfully used in various areas related to water resources. However, uncertainty analysis of these models has been less appreciated in prior studies. In the present study, the output uncertainty of five data-driven models including modular, PCA (Principle Component Analysis), TLRN (Time-Lagged Recurrent Network), ANFIS (Adaptive-Network-based Fuzzy Inference System) and SVM (Support Vector Machine) type models in forecasting river flow has been investigated using 95PPU, p-factor and d-factor quantities. Using the observed meteorological and flow data during 1998-2012 in Hablehroud Basin, different structures of the proposed models were trained and tested. The final values of p-factor and d-factor for each model type were obtained. The results showed that SVM with a p-factor of 82% produces the most reliable forecasts in the present study.

کلیدواژه‌ها [English]

  • uncertainty
  • monthly streamflow
  • stochastic calibration
  • neuro-fuzzy model
  • Gamma test
Abbaspour, K. C, Johnson C. A. and van Genuchten, M. Th. (2004). Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal, 3. 1340–1352.
Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524. 733–752.
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. (2007). Modelling hydrology and water qualityin the pre-Alpine/Alpine Thur watershed using SWAT. Journal of Hydrology, 333. 413–430.
Afan, H. A., El-shafie, A., Mohtar, W. H. M. W. and Yaseen, Z. M. (2016). Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction. Journal of Hydrology, 541. 902–913.
Ahani, A. and Shourian, M. (2017). Prediction of Monthly Streamflow Using Data-driven Models. Iran Water Resources Research, 13(2). 207–214. (In Farsi)
Azari, T. and Samani, N. (2015). Two Multilayer Perceptron Networks for the Determination of Leaky Confined Aquifer Parameters. Scientific Quarterly Journal, GEOSCIENCES, 25(97). 375–386. (In Farsi)
Bastola, S., Murphy, C. and Sweeney, J. (2011). The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Advances in Water Resources, 34(5). 562–576.
Behzad, M., Asghari, K., Eazi, M. and Palhang, M. (2009). Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with Applications, 36(4). 7624–7629
Butts, M. B., Payne, J. T., Kristensen, M. and Madsen, H. (2004). An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298(1–4). 242–266.
Chang, F. and Chang, Y. (2006). Adaptive neuro-fuzzy inference system for Prediction of water Level in reservoir. Advances in Water Resources, 29. 1-10.
Dams, J., Nossent, J., Senbeta, T. B., Willems, P. and Batelaan, O. (2015). Multi-model approach to assess the impact of climate change on runoff. Journal of Hydrology, 529. 1601–1616.
Ding, C. and He, X. (2004). K-Means clustering via principal component analysis. In proceedings of the 21st International Conference on Machine Learning, Banff, Canada.
Feng, Z-K., Niu, W-J., Tang, Z-Y., Jiang, Z-Q., Xu, Y., Liu, Y. and Zhang, H-R. (2020). Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. Journal of Hydrology, 583. 124627.
Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J. and Butts, M. B. (2004). Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. Journal of Hydrology, 298(1–4). 222–241.
Isazadeh, M., Biazar, S. M. and Ashrafzadeh, A. (2017). Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environmental Earth Sciences, 76(17). 1–14.
Karimi, S., Shiri, J. and Nazemi, A. (2013). Estimating Daily Reference Crop Evapotranspiration Using Artificial Intelligences-Based ANFIS and ANN Techniques and Empirical Models. Water and Soil Science, 23(2). 139–158. (In Farsi)
Kasiviswanathan, K. S., Cibin, R., Sudheer, K. P. and Chaubey, I. (2013). Constructing prediction interval for artificial neural network rainfall runoff models based on ensemble simulations. Journal of Hydrology, 499. 275–288.
Lee, D. H. and Kang, D. S. (2016). The application of the artificial neural network ensemble model for simulating streamflow. Procedia Engineering, 154. 1217–1224.
Liu, Y. and Gupta, H. V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resources Research, 43. 1–18.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transaction of ASABE, 50(3). 885–900.
Najafi, M. R., Moradkhani, H. and Jung, I. W. (2011). Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological Processes, 25(18). 2814–2826.
Nourani, V., Baghanam, H., Adamowski, J. and Kisi, O. (2014). Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology, 514. 358–377.
Pai, P. F. and Hong, W. C. (2007). A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21. 819–827.
Samani, N., Gohari-Moghadam, M. and Safavi, A. A. (2007). A simple neural network model for the determination of aquifer parameters. Journal of Hydrology, 340(1–2). 1–11.
Stefánsson, A, Končar, N. and Jones, A. (1997). A note on the gamma test. Neural Computing and Application, 5(3). 767–780.
Tan, Q-F., Lei, X-H., Wang, X., Wang, H., Wen, X., Ji, Y. and Kang, A-Q. (2018). An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. Journal of Hydrology, 567. 1–11.
Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, New York.
Velázquez, J. A., Schmid, J., Ricard, S., Muerth, M. J., Gauvin St-Denis, B., Minville, M., Chaumont, D., et al. (2013). An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrology and Earth System Sciences, 17(2), 565–578.
Wieland, R., Mirschel, W., Zbell, B., Groth, K., Pechenick, A. and Fukuda, K. (2010). A new library to combine artificial neural networks and support vector machines with statistics and a database engine for application in environmental modeling. Environmental Modelling & Software, 25(4). 412–420.
Wu, W., Dandy, G. C. and Maier, H. R. (2014). Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling & Software, 54. 108–127.
Yang, J., Reichert, P., Abbaspour, K. C., Xia, J. and Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358. 1–23.
Yaseen, Z. M., El-shafie, A., Jaafar, O., Afan, H. A. and Sayl, K. N. (2015). Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530. 829–844.