بررسی حاصلخیزی اراضی شالیزاری با استفاده از شاخص تلفیقی باروری خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد آزمایشگاه، مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

2 استادیار مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

3 استادیار مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، آمل، ایران

4 دانشیار گروه خاکشناسى، دانشکده کشاورزى، دانشگاه گیلان، رشت،ایران

5 مؤسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، آمل، ایران

چکیده

افزایش جمعیت و تقاضای مواد غذایی نیازمند نگرش جدی به افزایش بهره­وری زمین­های کشاورزی است. در این ارتباط مناسب­ترین روش، افزایش عملکرد در واحد سطح می­باشد. یکی از روش­های افزایش عملکرد، افزایش حاصلخیزی خاک­های کشاورزی است. شاخص­های تلفیقی زیادی وجود دارند که می­توانند شرایط حاصلخیزی خاک را به­خوبی نشان ­دهند، از جمله آن­ها  شاخص تلفیقی باروری خاک  (IFI)است. مهم­ترین هدف در این تحقیق ارزیابی وضعیت حاصلخیزی خاک  با استفاده از IFI و ارائه راهکارهای مناسب  برای مدیریت خاک می­باشد. در این راستا 128 نمونه مرکب خاک از مزرعه پژوهشی ایستگاه گلدشت (شهرستان آمل-مازندران) برای اندازه­گیری برخی از ویژگی­های مهم فیزیکی و شیمیایی موثر بر کیفیت خاک تهیه گردید. سپس از منطق فازی برای رتبه­بندی کیفی ویژگی­های خاک، از تجزیه به مولفه اصلی برای وزن­دهی این ویژگی­ها و در نهایت با استفاده از مفهوم شاخص تلفیقی باروری، تلفیق ویژگی­های مورد بررسی، انجام شد. نتایج نشان می­دهد که مقدار شاخص تلفیقی باروری در این اراضی از 03/0 تا 20/0 در نوسان است. با استفاده از نقشه­های شاخص تلفیقی، باروری مزرعه مورد نظر به چهار گروه تقسیم گردید. در مقادیر پایین شاخص تلفیقی باروری (کیفیت حاصلخیزی پایین) pH، فسفر قابل استفاده، کربن­آلی و به دنبال آن نیتروژن کل کمتر از حدود بحرانی آن­ها برای رشد برنج است و در مقادیر بالای شاخص تلفیقی باروری، محدودیت کربن­آلی و نیتروژن کل وجود دارد. کمبود کربن ­آلی در کل کرت­های مورد بررسی می­تواند بر حاصلخیزی خاک (نقش حیاتی در نگهداری و آزادسازی عناصر غذایی) و خصوصیات فیزیکی خاک (بهبود ساختمان خاک، تخلخل، نگهداری آب) ثاثیر انکارناپذیر دارد. یافته­های ما نشان می­دهد که استفاده از شاخص­های تلفیقی خاک، علاوه بر نشان دادن محدودیت­های موثر بر کشت محصول زراعی می­تواند با ترکیب تمام خصوصیت­های موثر بر رشدگیاه،  نمای بهتری از مدیریت تغذیه در اراضی شالیزاری ارائه کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Paddy Soil Fertility Using Integrated Fertility Index

نویسندگان [English]

  • maryam Shakouri 1
  • Shahram MahmoudSoltani 2
  • Mohammad Taghi Karbalai agha molki 3
  • Mahmoud Shabanpour 4
  • Ali Poorsafar Tabalvandani 5
1 Laboratory Officer of Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
2 Assistant Professor, rice research institute of Iran, Agricultural research, education and extension organization
3 3- Assistant Professor, Rice research institute of Iran
4 SoilAssociate professor, Soil Science Department, College of Agricultural Science, University of Guilan, Rasht, Iran
5 Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Amol, Iran
چکیده [English]

The rapid growth in world population and its consequent increasing food demand require a scientific approach to paddy field productivity. To further increase rice production, the best solution is enhancing the rice yields per unit area. There are numerous integrated indices that can clarify the soil conditions and fertility characteristics, in which the integrated fertility index (IFI) is more practical. Therefore, the current study will explore soil fertility status of paddy field using IFI equation, and more broadly to issue suitable solutions for paddy soil management. This study was undertaken at Goldasht research station of the rice research institute of Iran-Amol. One hundred and twenty-eight paddy soil composite samples of plowing layer (depths of 0 to 30 cm) with a constant interval were collected to analyze for some physical and chemical properties based on rice soil requirements. Fuzzy logic theory, Principal component analysis (PCA) and IFI concepts were used for quantitative ranking of qualitative soil characters, weighing of soil properties and integration of studied soil characters, respectively. The results indicated that IFI values varied from 0.03 to 0.20. The studied paddy fields were divided into 4 individual parts through IFI values mapping method. At lower values of IFI (low soil fertility), pH, available P, OC and less broadly total N were lower than their critical levels for proper rice growth and development. Interestingly at higher values of IFI, OC and total N limitation still existed. It can be concluded that organic carbon limitation in all studied plots had negative and unavoidable effects on not only paddy soil fertility status (a vital role for sorption and desorption of soil nutrients), but also soil physical characters (enhancing soil structure, porosity, and water retention). The findings of current study also showed that the integrated fertility indices not only can show the most important limitations for rice production but also can issue the effective solutions to remediate these limitations. Key words: Rice, soil fertility, integrated fertility index, fuzzy logic, geostatistics

کلیدواژه‌ها [English]

  • Rice
  • soil fertility
  • integrated fertility index
  • fuzzy logic
  • geostatistics
Andrews, S. S., Karlen, D. L., and Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, ecosystems and environment90(1), 25-45.
Andronikov, S. V., Davidson, D. A., and Spiers, R. B. (2000). Variability in contamination by heavy metals: sampling implications. Water, air, and soil pollution120(1-2), 29-45.
Armstrong, M., and Boufassa, A. (1988). Comparing the robustness of ordinary kriging and lognormal kriging: outlier resistance. Math Geol, 20:447–457
Ayoubi, S. A., Mohammad, Z. S., and Khormali, F. (2007). Prediction total N by organic matter content using some geostatistic approaches in part of farm land of Sorkhankalateh, Golestan Province. Journal of Agricultural Sciencesand Natural Resources, 14(4), 23-33. (In Farsi).
Bagherzadeh, A., Gholizadeh, A., and Keshavarzi, A. (2018). Assessment of soil fertility index for potato production using integrated Fuzzy and AHP approaches, Northeast of Iran. Eurasian Journal of Soil Science7(3), 203-212.
Banaei, M. (1998). Revised map of thermal and moisture regimes of soils. Soil and Water Research Institute of Iran.Tehran.Iran.
Bates, R. G., and Vijh, A. K. (1973). Determination of pH: theory and practice. Journal of The Electrochemical Society120(8), 263C-263C.
Bouman, B.A., Barker, R., Humphreys, E., Tuong, T.P., Atlin, G., Bennett, J., Dawe, D., Dittert, K., Dobermann, A., Facon, T. and Fujimoto, N. (2007). Rice: feeding the billions (No. 612-2016-40554).
Burgess, T. M., Webster, R., and McBratney, A. B. (1981). Optimal interpolation and isarithmic mapping of soil properties. IV Sampling strategy. Journal of Soil Science32(4), 643-659.
Cahn, M. D., Hummel, J. W., and Brouer, B. H. (1994). Spatial analysis of soil fertility for site-specific crop management. Soil Science Society of America Journal58(4), 1240-1248.
Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., and  Konopka, A. E. (1994). Field-scale variability of soil properties in central Iowa soils. Soil science society of America journal58(5), 1501-1511.
Charkhabadi, A., Rahimi, A.H. (2014). Evaluation of some heavy metals in paddy soils and their accumulation in rice tissues in Lanjan area of ​​Isfahan province. Journal of soil and water knowledge, 24(2), 120 -107. (In Farsi).
Chen, M., and Ma, L. Q. (2001). Taxonomic and geographic distribution of total phosphorus in Florida surface soils. Soil Science Society of America Journal65(5), 1539-1547.
Cheng, J., Ding, C., Li, X., Zhang, T., and Wang, X. (2016). Soil quality evaluation for navel orange production systems in central subtropical China. Soil and Tillage Research155, 225-232.
Confalonieri, R., Rosenmund, A. S., and Baruth, B. (2009). An improved model to simulate rice yield. Agronomy for Sustainable Development29(3), 463-474.
Dahiya, I. S., Richter, J. and Malik, R. S. (1984). Soil spatial variability: A review. International Tropical. Agriculture, 1(11), 1-102.
Davatgar, N., Shakouri Katigari, M., Rezai, L. (2015).Fertility evaluation of Guilan province paddy fields. Lamd management journal. 3(1), 1-13. (In Farsi).
Dobermann, A., and Oberthür, T. (1997). Fuzzy mapping of soil fertility—a case study on irrigated rice land in the Philippines. Geoderma77(2-4), 317-339.
Dou, F., Yu, X., Ping, C. L., Michaelson, G., Guo, L., and Jorgenson, T. (2010). Spatial variation of tundra soil organic carbon along the coastline of northern Alaska. Geoderma154(3-4), 328-335.
FAO. 2015. Healthy soils are the basis for healthy food production. FAO 2015 I4405E/1/02.15.
Gee, G. W., and Bauder, J. W. (1986). Particle-size analysis 1. Methods of soil analysis: Part 1—Physical and mineralogical methods, (methodsofsoilan1), 383-411.
Givi, J. (1997). Qualitative evaluation of land suitability for field and fruit crops. Iranian Soil and Water Research Institute: Tehran, Iran, 1-115.
Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma89 (1-2), 1-45.
Gupta, P.K. (2004): Soil, plant, water and fertilizer analysis. Shyam Printing Press, Agrobios, India, 38p.
Hartono, A., Funakawa, S., and Kosaki, T. (2005). Phosphorus Sorption‐Desorption Characteristics of Selected Acid Upland Soils in Indonesia. Soil Science and Plant Nutrition51(6), 787-799.
Hashemi, M., Gholam Ali Zadeh Ahangar, A., Bameri, A., Sarani, F. and Hejazi Zadeh, F. (2016). Identification and Zoning of Soil Physical and Chemical Properties Using Geostatistical Methods in GIS (Case Study: Meskangi-Sistan Region). Journal of Water and Soil Science and Agriculture Industry, 30(2), 458-443. (In Farsi).
Hassani Pak, A. A. (1998). Geostatistical. First Edition, University of Tehran Publications, 314 pages. Iran, 611p.
He, Y., and Li, Z. (2000). Nutrient cycling and balance in red soil agroecosystem and their management. Pedosphere10(2), 107-116.
Imaz, M. J., Virto, I., Bescansa, P., Enrique, A., Fernandez-Ugalde, O., and Karlen, D. L. (2010). Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil and Tillage Research107(1), 17-25.
Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R., and Whisler, F. D. (2005). Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal69(4), 1338-1350.
Jiang, P., and Thelen, K. D. (2004). Effect of soil and topographic properties on crop yield in a north-central corn–soybean cropping system. Agronomy Journal96(1), 252-258.
Johnston, A. E., Goulding, K. W. T., and Poulton, P. R. (1986). Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil use and management2(1), 3-10.
Jose sione, S. M., Wilson, M.G., Lado M and Gonzalez. 2017. Evaluation of soil degradation produced by rice crop system in a vertisol, using a soil quality index. Catena, 150:79-86.
Kargar, M., and Farzi, H. (2018). Mapping of some soil characters using geostatistis and GIS. The third national conference of soil conservation and watershed management. Soil conservation and watershed management research institute of Iran. Tehran. Iran.
Kazemi Poshtesari, M., Tahmasebi Sarvestani, Z, Kamkar, B., Shattai, Sh and Sadeghi, S. (2012). Evaluation of Geostatistical Methods for Estimation and Zoning of Primary Food Elements in Some Agricultural Lands of Golestan Province. Journal of Soil and Water Science, 22(1), 218-201.
Khadka, D., Lamichhane, S., Khan, S., Joshi, S., and Pant, B. B. (2016). Assessment of soil fertility status of Agriculture Research Station, Belachapi, Dhanusha, Nepal. Journal of Maize Research and Development2(1), 43-57.
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science304(5677), 1623-1627.
Li, P., Zhang, T., Wang, X., and Yu, D. (2013). Development of biological soil quality indicator system for subtropical China. Soil and Tillage Research126, 112-118.
Li, Y., Niu, S., and Yu, G. (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta‐analysis. Global Change Biology22(2), 934-943.
Mahmoud Soltani, S., Davatgar, N., Shakouri, M and Paykan, M. (2017). Spatial variability of phosphorus fractions in paddy soils. J. of Water and Soil Conservation, 24(5), 93-109.
Mahmoud Soltani, S., Eftekhari, K., Karbalai Agha molki, M.T. and Shakoori, M. (2019). Detailed Soil Classification, Mapping of Some Selected Soil Characteristics and Land Suitability Evaluation for Rice and Recommended Second Crops in Gav-Dasht Research Station, Mazandaran Province. Final report.Rice research institute of Iran. Rasht. Iran. (In Press, In Farsi).
Malakooti, M.J., and Kavoosi, M. 2004. Balance nutrition of rice. SANA publication press.
Marx, D. B., and Thompson, K. C. (1987). Practical aspects of agricultural kriging. Bulletin-Arkansas, Agricultural Experiment Station (USA).
Meersmans, J., van Wesemael, B., De Ridder, F. A., and Van Molle, M. (2009). Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma152(1-2), 43-52.
Minasny, B., McBratney, A. B., Mendonça-Santos, M. D. L., Odeh, I. O. A., and Guyon, B. (2006). Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Soil Research44(3), 233-244.
Minestry of Jahad e Agriculture. (2017).The annual statistics of agricultural crops. MJA press.Tehran.Iran. (In Farsi).
Mirnia, K. H., and Mohammadian, M. (2005). Rice, disorders and management of alimentary ingredients.Mazndaran University press.Iran.436p. (In Farsi)
Mohammadi, J. (2006). Pedometry (Spatial statistics). Pelk issue.Iran.453p.
Mohammadi, J. 1999. Study of spatial variability of salinity in Ramhormoz region (Khuzestan) using geostatistical theory. Journal of Agricultural Science and Techniques, 3(1), 1-8.
Needelman, B. A., Gburek, W. J., Sharpley, A. N., and  Petersen, G. W. (2001). Environmental Management of Soil Phosphorus. Soil Science Society of America Journal65(5), 1516-1522.
Olsen, S. R., Sommers, L. E., and Page, A. L. (1982). Methods of soil analysisPart2, 403-430.
Owliaie, H.R., Najafi Ghiri, M.(2012). Effect of Long-Term Rice Cultivation on Physico-Chemical Properties and Clay Mineralogy of Soils in Yasouj Region. J. Sci. and Technol. Agric. And Natur. Resour, Water and Soil Sci., 17(65), 39-49.
Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., and Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma149(3-4), 325-334.
Reza, S. K., Baruah, U., and Sarkar, D. (2013). Hazard assessment of heavy metal contamination by the paper industry, north-eastern India. International journal of environmental studies70(1), 23-32.
Reza, S. K., Dutta, D., Bandyopadhyay, S., and Singh, S. K. (2019). Spatial Variability Analysis of Soil Properties of Tinsukia District, Assam, India. Agricultural Research8(2), 231-238.
Rezaei, H., Esmail Nejad, L., Saadat, Q and P, Maleki. (2018). Zoning of effective parameters on paddy soil fertility quality for optimal fertilizer management. Journal of Soil and Water Conservation Research. 25(4), 259-274. (in Farsi).
Risser, P.G. (1991). Long-term Ecological Research, an International Perspective. Wiley, New York.USA. pp. 1– 290.
Roades, J. D.1982. Soluble salts. P. 167-179. In A. L. Page et.al. (ed). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Schoning, I., Totsche, K.U., and Kögel-Knabner, I. (2006). Small scale spatial variability of organic carbon stocks in litter and solum of a forested Luvisol. Geoderma136(3-4), 631-642.
Shahbazi, K. and Besharati, H. (2013). An overview of the fertility status of Iranian agricultural soils. Land Management Journal, 1(1),1-15.
Shakouri Katigiri, M., Shabanpour, M., Asadi, H., Duwatgar, N. and Babazadeh, S. (2011). Evaluation of the efficiency of spatial interpolation methods in carbonation and bulk density characterization of Guilan province paddy soils. Journal of Water and Soil Conservation Research, 18(2), 195-210. (In Farsi).
Shindo, H., Watanabe, D., Onaga, T., Urakawa, M., Nakahara, O., and Huang, Q. (2002). Adsorption, activity, and kinetics of acid phosphatase as influenced by selected oxides and clay minerals. Soil Science and Plant Nutrition48(5), 763-767.
Sione, S. M. J., Wilson, M. G., Lado, M., and González, A. P. (2017). Evaluation of soil degradation produced by rice crop systems in a Vertisol, using a soil quality index. Catena150, 79-86.
Sun, B., Zhou, S., and Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma115(1-2), 85-99.
Susanto, A. N. (2013). Spatial Variability of Soil Inherent Fertility Status at Irrigation Rice Field in Waeapo Plain, Buru Regency. Journal of Tropical Soils18(2), 115-124.
Swarup, A. (1985). Yield and nutrition of rice as influenced by pre-submergence and amendments in a highly sodic soil. Journal of the Indian Society of Soil Science33(2), 352-357.
Sys, I. C., Van Ranst, E., Debaveye, I. J., and F. Beenaert. (1993). Land evaluation (Part I-III). Crop Requirements. 199p. General Administration for Development Cooperation, Brussels. Belgium.
Tesfahunegn, G. B. (2014). Soil quality assessment strategies for evaluating soil degradation in Northern Ethiopia. Applied and Environmental Soil Science2014.
Thomas, G.W. (1982). Exchangeable cations. In: Page A L., Miller R.H. and Keeney D.R. (Eds.), Methods of Soil Analysis- Part 2. American Society of Agronomy, Madison, 159-165.
Tsegaye, T., and Hill, R. L. (1998). Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurements. Soil Science163(2), 155-165.
Velasquez, E., Lavelle, P., and Andrade, M. (2007). GISQ, a multifunctional indicator of soil quality. Soil Biology and Biochemistry39(12), 3066-3080.
Veronesi, F., Corstanje, R., and Mayr, T. (2014). Landscape scale estimation of soil carbon stock using 3D modelling. Science of the Total Environment487, 578-586.
Walkley, A., and Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science37(1), 29-38.
Webster, R., and Oliver, M. A. (2000). Geostatistics for environmental scientists. John Wiley and Sons.
Webster, R., and Oliver, M. A. (2007). Characterizing spatial processes: the covariance and variogram. Geostatistics for Environmental Scientists, 2nd edn. Wiley, Chichester, 47-73.
Yao, R., Yang, J., Gao, P., Zhang, J., and Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil and Tillage Research128, 137-148.
Yingbin, H., Uchida, S., Huajun, T., Youqi, C., and Jia, L. (2010). Application of TERRA/MODIS images, TM images and weather data to assess the effect of cold damage on rice yield. International Journal of Agricultural and Biological Engineering3(2), 31-38.
Zareii, V., and Sheklabadi, M. (2011). Effect of land use change and slope position on soil organic carbon segments. The first national congress of agricultural science and new technologies. Znjan University. Zanjan. Iran.
Zhang, C., and McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma119(3-4), 261-275.