کاربرد مقیاس سازی در برآورد مشخصات نفوذ خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،گروه مهندسی آب ، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

2 استادیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

3 دانشیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

4 عضو هیئت علمی، گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

چکیده

یکی از روش­های تعیین پارامترهای معادله نفوذ در آبیاری نواری، استوانه مضاعف است. در این روش با استفاده از اندازه­گیری مقدار نفوذ در زمان­های مختلف می­توان پارامترهای معادلات نفوذ را به دست آورد. از طرفی در سال­های اخیر از مقیاس­سازی برای بیان مشخصات پویایی آب در خاک و کاهش اندازه­گیری­های مورد نیاز استفاده شده است. هدف از این پژوهش، به دست آوردن پارامترهای معادله نفوذ کوستیاکوف-لوئیس با استفاده از حداقل اندازه­گیری­های مزرعه­ای می­باشد.این تحقیق با استفاده از داده­های 15 آزمایش استوانه مضاعف در نوارهای مختلف مزرعه آزمایشی دانشگاه زابل انجام شد. برای به دست آوردن معادله نفوذ در هر نقطه از یک معادله نفوذ مرجع و فقط یک زمان اندازه­گیری نفوذ استفاده شد. به منظور بررسی دقت و صحت عملکرد روش مورد بررسی در برآورد نفوذ تجمعی از آماره­های ریشه میانگین مربعات خطا (RMSE) و ضریب تبیین (R2) استفاده شد. نتایج نشان داد که انتخاب منحنی مرجع، دلخواه بوده و هریک از 15 نقطه آزمایش را می­توان به عنوان منحنی مرجع انتخاب کرد. نزدیک بودن مقدار R2 به عدد یک (99/0< )  و همچنین پائین بودن مقدار  RMSE(001/0>)، نشان­­دهندۀ دقت بالای روش ارائه شده در این تحقیق است. همچنین فاکتور مقیاس به دست آمده بر اساس زمان­های مختلف نفوذ (5/0، 1، 2، 3 و 4 ساعت) تفاوت زیادی با یکدیگر ندارد. رابطه ارائه شده در این پژوهش به دلیل نیاز به داده­های ورودی کمتر و اندازه­گیری آسان‌تر نسبت به روابط ارائه شده در پژوهش­های گذشته، برتری­ داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Scaling in Estimating Soil Infiltration Characteristics

نویسندگان [English]

  • mohammad taher Poozan 1
  • mohammad mahdi chari 2
  • peyman Afrasiab 3
  • parisa kahkhamoghadam 4
1 Ms student,Water engineering depatment, Faculty of water and soil, university of Zabol, Zabol, Iran
2 Assistance Professor ,Water Engineering Department, Faculty of water and soil, University of Zabol, zabol, Iran,
3 Associate Professor, Water Engineering Department, Faculty of water and soil, University of Zabol, zabol,
4 Faculty member, Water Engineering Department, Faculty of water and soil, The University of zabol, zabol, Iran
چکیده [English]

One of the methods for determination of infiltration equation parameters in border irrigation is the double rings. In this method, the parameters of the infiltration equations can be obtained by measuring the amount of infiltration at different times. Moreover, in recent years, the scale-up has been used to express the dynamics of water in the soil and reduce the required measurements. The objective of this study is to obtain the parameters of the Kostiakov-Luis infiltration equation using minimum field measurements. This research was performed using data from 15 double ring testing in different borders of the field in Zabol University. In this research to obtain the infiltration equation in each point, a reference infiltration equation with only one infiltration measuring time was used. In order to evaluate the accuracy of the method, the mean square error (RMSE) and coefficient of determination (R2) were used for estimating cumulative infiltration. The results showed that the reference curve choice was arbitrary and each of the 15 test points could be selected as the reference curve. The closeness of (R2) to one (0.99) and also low RMSE (0.001) indicate the high accuracy of the method presented in this study. Also, the scale factors obtained based on different infiltration times (0.5, 1, 2, 3 and 4 hours) are not very different. The advantage of the relationship presented in this study is requiring less input data and easier measurement as compared to other previous functions.

کلیدواژه‌ها [English]

  • Scaling factor
  • Double ring
  • Kostiakov–Lewis
Chari, M,M. Davari, K. Ghahraman, B. ziaiei, A, N. (2016). Providing general equation for the advance of the water at the border. Journal of Irrigation and Drainage, 11 (2): 163-180.  (In Farsi).
Childs, J., Wallender, W. W., & Hopmans, J. W. (1993). Spatial and seasonal variation of furrow infiltration. Journal of Irrigation and Drainage engineering, 119(1), 74-90.
Ebrahimian, H. Ghanbarian Alavijeh, B. Abbasi, F. Hoorfar, A, H. (2010). A new two-point method for estimating infiltration parameters in furrow and border irrigation and comparison with other methods. Journal of Water and Soil. 24(4): 690-698. (In Farsi).
Elliott, R. L., Walker, W. R., & Skogerboe, G. V. (1983). Infiltration parameters from furrow irrigation advance data. Transactions of the ASAE, 26(6), 1726-1731.
Ghobadi, M. Ebrahamian, H. (2015). Use of scaling method to estimate infiltration in variable and fixed alternate furrow irrigation. Journal of Agricultural Engineering Research. 16(2), 13-24. (In Farsi).
Green, W. H. and Ampt, G. A. (1911).Studies on soil physics, 1.The flow of air and water through soils.J.Agric. Sci. 4(1): 1-24.
Haise H.R. Donnan W.W. Phelan j. T. Lawhon L. F. and Shockley D.G. (1956). The use of ring infiltrometers to determine the intake characteristics of irrigated soils. Publ ARS41 USDA. Agricultueral Resarch Service and Soil Conservation Service, 26(6): 451-463.
Holtan, H. N. (1961). Concept for infiltration estimates in watershed engineering. USDA-ARS Bull. 41–51.
Horton, R. E. (1941).An approach toward a physical interpretation of infiltration-capacity. Soil Sci. Soc. Am. J. 5(C): 399-417.
Jaynes, D.B., Clemmens, A. J. (1986). Accounting for spatially variable infiltration in border irrigation models. Water Resource Research, 22 (8): 1257-1262.
Khatri, K. L., and Smith, R. J. (2006).Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrigation Science, 25(1): 33-43.
Khazimehnejad, H. Noferasti, A, M. Sarvarian, M. Basirat, J. (2007). Investigation and evaluation of infiltration equations in sandy loam soils. Irrigation seminar and reduction of evaporation. (In Farsi).
Kostiakov, A. N. (1932). On the dynamics of the coefficient of water percolation in soils and the necessity of studying it from the dynamic point of view for the purposes of amelioration. Trans. Sixth Comm. Int. Soc. Soil Sci., 1, 7-21.
Kosugi, K., & Hopmans, J. W. (1998). Scaling water retention curves for soils with lognormal pore-size distribution. Soil Science Society of America Journal, 62(6), 1496-1505.
Langat, P. K., Smith, R. J., and Raine, S. R. (2008).Estimating the furrow infiltration characteristic from a single advance point. Irrigation Science, 26(5): 367-374.
Machiwal, D., Jha, M. K., & Mal, B. C. (2006). Modelling infiltration and quantifying spatial soil variability in a wasteland of Kharagpur, India. Biosystems Engineering, 95(4), 569-582.
Miller, E. E., & Miller, R. D. (1956). Physical theory for capillary flow phenomena. Journal of Applied Physics, 27(4), 324-332.
Oyonarte, N. A., Mateos, L., & Palomo, M. J. (2002). Infiltration variability in furrow irrigation. Journal of Irrigation and Drainage Engineering, 128(1), 26-33.
Philip, J. R. (1957). The theory of infiltration: 3. Moisture profiles and relation to experiment. Soil Science, 84(2), 163-178.
Rasoulzadeh, A., & Sepaskhah, A. R. (2003). Scaled infiltration equations for furrow irrigation. Biosystems Engineering, 86(3), 375-383.
Sadeghi, M. Ghahraman, B. Davari, k. (2008). Scale and predict the soil moisture profile in the redistribution phase. Water and Soil Journal, 22 (2): 431- 417
Sadeghi,M., Ghahraman,B., Ziaei,A.N., Davary,K., Reichardt,K. (2012). Invariant solutions of Richards equation for Water movement in dissimilar Soils. Soil Science Society of America Journal, 76(1): 1-9.
Sadi Khani, M, R. Sohrabi A. (2016). Effect of Land Use on the Efficiency of Some Models of Water Infiltration to Soil. Soil Management and Sustainable Production Journal. 7(1): 127-138 (In Farsi).
Sharma, M. L., Gander, G. A., & Hunt, C. G. (1980). Spatial variability of infiltration in a watershed. Journal of Hydrology, 45(1-2), 101-122.
Tuli, A., Kosugi, K., & Hopmans, J. W. (2001). Simultaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution. Advances in Water Resources, 24(6), 677-688.
Warrick, A. W. (1980). Spatial variability of soil physical properties in the field. Application of Soil Physics., 319-344.
Warrick, A. W., Mullen, G. J., & Nielsen, D. R. (1977). Scaling field‐measured soil hydraulic properties using a similar media concept. Water Resources Research, 13(2), 355-362.
Zolfaghari, A.A., Mirzaee, S., and Gorgi, M. (2012). Comparison of different models for estimating cumulative infiltration. International Journal of Soil Science. 7 (3), 108-115.