روندیابی سیلاب با استفاده از مدل ماسکینگام با مشتق مرتبه کسری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کاندیدای دکتری سازه‌های آبی، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

2 دانشیار، گروه مهندسی آبیاری و آبادانی دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

3 استادیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

چکیده

مدل­های ماسکینگام موجود تنها در معادله ذخیره با یکدیگر متفاوت هستند. تاکنون به منظور لحاظ نمودن ویژگی غیرخطی موج سیلاب، ساختار معادله ذخیره بر اساس تجربه و به شیوه آزمون و خطا اصلاح شده است تا مشخصات کلی سیل دقیق­تر مدل شود. یکی از روش­های با مبنای تئوری برای لحاظ نمودن ویژگی­های غیرخطی در مدل روندیابی ماسکینگام، استفاده از مشتق مرتبه کسری در معادله دیفرانسیل پیوستگی است. تحقیق حاضر به ارائه مدل جدیدی از ماسکینگام می­پردازد که در آن از معادله خطی ذخیره و معادله دیفرانسیل پیوستگی از مرتبه کسری استفاده شده است. همان‌طور که در این تحقیق نشان داده شده است، مدل جدید قادر است هم سیلاب­های با رفتار خطی و هم رفتار غیرخطی را شبیه­سازی کند. مدل پیشنهادی ماسکینگام از مرتبه کسری، برای سه مجموعه­ی مختلف از داده­های سیل اجرا و آزمایش شد. نتایج این مطالعه نشان می­دهد که مدل ماسکینگام پیشنهادی منجر به بهبود نتایج می­شود و به طور مؤثر، ویژگی­های موج سیلاب را نسبت به مدل‌های سنتی ماسکینگام بهتر تخمین می­زند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Flood Routing using Muskingum Model with Fractional Derivative

نویسندگان [English]

  • MirMohammad Bayrami 1
  • Alireza Vatankhah 2
  • Arezoo Nazi Ghameshlou 3
1 PhD Candidate of Water Structures, Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Iran.
2 Associate Professor, Department of Irrigation and Reclamation Engineering, University College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran
3 Assistant Professor, Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran.
چکیده [English]

The existing Muskingum models vary only in the form of the storage equation. So far, for accounting the nonlinearity characteristic of flood wave, the form of the storage equation has been modified based on the experience and in a trial and error manner in order to capture the overall flood propagating characteristics more accurately. One of the theoretical based method for considering the nonlinear characteristics in Muskingum model is to use the fractional derivative in the continuity differential equation. This study presents a new Muskingum model in which the linear storage equation and the continuity equation with fractional derivative are used. As shown in this study, the new model can simulate flood waves with both linear and nonlinear behaviors. The proposed Muskingum model with fractional derivative order was implemented and tested on three different sets of flood data. The results of this study indicate that the proposed Muskingum model improves the results and estimates the flood wave characteristics more accurately than the traditional linear Muskingum models.

کلیدواژه‌ها [English]

  • Flood routing
  • Nonlinear model
  • Hydrograph
  • Muskingum model
  • Fractional derivative
Aldama, A. (1990). Least-Squares Parameter Estimation for Muskingum Flood Routing. Journal of Hydraulic Engineering, 116(4):580-586.
Barati, R. (2013). Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE Journal of Civil Engineering, 17(5), 1139-1148.
Brutsaert, W. (2005). Hydrology: An introduction. Cambridge University Press.
Chaudhry, M. H. (2007). Open-channel flow. Springer Science and Business Media.
Diskin, M. H. (1967). On the solution of the Muskingum flood routing equation. Journal of Hydrology, 5, 286-289.
Easa, S. M. (2014a). Multi-criteria optimisation of the Muskingum flood model: a new approach. Proceedings of the Institution of Civil Engineers-Water Management, 168(5), 220-231.
Easa, S. M. (2014b). Closure to “Improved Nonlinear Muskingum Model with Variable 479 Exponent Parameter” by Said M. Easa. Journal of Hydrologic Engineering, 19(10), 480 07014008.
Easa, S. M. (2015). Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters. KSCE Journal of Civil Engineering, 19(7), 2281-2290.
Ercan, A. and Kavvas, M. L. (2017). Time–space fractional governing equations of one dimensional unsteady open channel flow process: Numerical solution and exploration. Hydrological Processes, 31(16), 2961-2971.
Gelegenis, J. and Serrano, S.E. (2000). Analysis of Muskingum Equation Based Flood Routing Schemes. Journal of Hydrologic Engineering, 5(1):102-105.
Gill, M. A. (1977). Routing of floods in river channels. Hydrology Research, 8(3), 163-170.
Gill, M. A. (1979). Translatory characteristics of the Muskingum method of flood routing. Journal of Hydrology, 40(1-2), 17-29.
Gill, M. A. (1989). Response of Muskingum equation to step input. Journal of irrigation and drainage engineering, 115(4), 736-738.
Gill, M. A. (1992). Numerical solution of Muskingum equation. Journal of Hydraulic Engineering, 118(5), 804-809.
Heggen, R. J. (1984). Univarlate least squares Muskingum flood routing. JAWRA Journal of the American Water Resources Association, 20(1), 103-108.
Huang, Q., Huang, G. and Zhan, H. (2008). A finite element solution for the fractional advection–dispersion equation. Advances in Water Resources, 31(12), 1578-1589.
Kavvas, M. L. and Ercan, A. (2014). Fractional governing equations of diffusion wave and kinematic wave open-channel flow in fractional time-space. I. Development of the equations. Journal of Hydrologic Engineering, 20(9), 04014096.
Kavvas, M. L. and Ercan, A. (2016). Time-Space Fractional Governing Equations of Unsteady Open Channel Flow. Journal of Hydrologic Engineering, 22(2), 04016052.
Kilbas, A. A. A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). Elsevier Science Limited.
McCarthy, G.T. (1938). The unit hydrograph and flood routing. Conf. North Atlantic Division, U.S. Army Corps of Engineers, New London, Conn.
Moussa, R. and Bocquillon, C. (2001). Fractional-step method solution of diffusive wave equation. Journal of Hydrologic Engineering, 6(1), 11-19.
Nash, J. E. (1959). A note on the Muskingum flood‐routing method. Journal of geophysical research, 64(8), 1053-1056.
O’Donnell, T. (1985). A direct three-parameter Muskingum procedure incorporating lateral inflow. Hydrological Sciences Journal, 30(4), 479-496.
Ouyang, A., Li, K., Truong, T. K., Sallam, A. and Sha, E. H. M. (2014). Hybrid particle swarm optimization for parameter estimation of Muskingum model. Neural Computing and Applications, 25(7-8), 1785-1799.
Podlubny, I. (1999). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Mathematics in Science and Engineering.
Ramirez, J. A. (2010). Colonel State University classes. Retrieved February 3, 2019, from http://www.engr.colostate.edu/~ramirez/ce_old/classes.
Sing, V.P and Scarlatos, P.D. (1989). Analysis of Nonlinear Muskingum Flood Routing. Journal Of Hydraulic Engineering, 113(1):61-79.
Vatankhah, A. R. (2014). Evaluation of explicit numerical solution methods of the Muskingum model. Journal of Hydrologic Engineering, 19(8), 06014001.
Wilson, E. M., (1974). Engineering  Hydrology. Macmillan, London.