تحلیل نیمرخ طولی سطح آب درون مصالح سنگریزه‌ای با استفاده از تئوری جریان متغیر تدریجی با درنظرگرفتن نیروی درگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1. داﻧﺸﺠﻮی ﮐﺎرﺷﻨﺎﺳﯽ ارﺷﺪ ﻣﻬﻨﺪﺳﯽ آب و سازه هیدرولیکی،گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه زنجان، زنجان، ایران

2 دانشیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه زنجان، زنجان، ایران

3 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه زنجان، زنجان، ایران

چکیده

ﺗﺤﻠﯿﻞ ﺟﺮﯾﺎن در درون ﻣﺼﺎﻟﺢ ﺳﻨﮕﺮﯾﺰه‌ای اﻏﻠﺐ ﺑﺎ ﺣﻞ ﻣﻌﺎدﻟﻪ دﯾﻔﺮاﻧﺴﯿﻠﯽ ﮐﻪ از ﺗﺮﮐﯿﺐ راﺑﻄﻪ ﻏﯿﺮﺧﻄﯽ [i=mvn] و ﻣﻌﺎدﻟﻪ ﭘﯿﻮﺳﺘﮕﯽ ﺑﻪ دﺳﺖ ﻣﯽآﯾﺪ، اﻧﺠﺎم ﻣﯽﮔﯿﺮد. اﯾﻦ ﻣﻌﺎدﻟﻪ دﯾﻔﺮاﻧﺴﯿﻠﯽ اولین بار توسط پارکین توسعه داده‌ شده و حل آن ﺑﻪ روش ﺗﻔﺎﺿﻞ ﻣﺤﺪود و ﻣﺘﻨﺎﺳﺐ ﺑﺎ اعمال ﺷﺮاﯾﻂ ﻣﺮزی ﻣﺴﺎﺋﻞ ﻣﻮرد ﻧﻈﺮ، ﺑﻪﻧﺴﺒﺖ ﺣﺠﯿﻢ و وﻗﺖﮔﯿﺮ اﺳﺖ. اﯾﻦ ﻣﺤﺎﺳﺒﺎت در ﺷﺮاﯾﻄﯽ ﮐﻪ ﻧﯿﻤﺮخ ﺳﻄﺢ آب در درون ﻣﺼﺎﻟﺢ ﺳﻨﮕﺮﯾﺰه‌ای ﻣﺸﺨﺺ ﻧﺒﺎﺷﺪ، ﺑﺎ ﻣﺸﮑﻼت ﺑﯿﺸﺘﺮی روﺑﻪ‌رو ﺧﻮاﻫﺪ ﺑﻮد. ﺑﺮای ﺗﺤﻠﯿﻞ ﺟﺮﯾﺎن در ﻣﺼﺎﻟﺢ ﺳﻨﮕﺮﯾﺰه‌ای ﻣﯽﺗﻮان از روش دﯾﮕﺮی ﮐﻪ ﻣﺘﮑﯽ ﺑﻪ ﺗﺌﻮری ﺟﺮﯾﺎن ﻣﺘﻐﯿﺮ ﺗﺪرﯾﺠﯽ اﺳﺖ، اﺳﺘﻔﺎده ﮐﺮد. ﻣﺤﺎﺳﺒﺎت در اﯾﻦ روش در ﻣﻘﺎﯾﺴﻪ ﺑﺎ روش ﻗﺒﻠﯽ ﺑﺴﯿﺎر ﺳﺎدهﺗﺮ و ﮐﻢ ﺣﺠﻢﺗﺮ اﺳﺖ. بررسی‌های انجام شده نشان می‌دهد که عدم در نظر گرفتن نیروی درگ در تئوری جریان‌های متغیر تدریجی باعث ایجاد خطای بزرگ در بخش‌هایی از جریان که انحنای خطوط جریان و سطح آب زیاد است، می‌گردد. در پژوهش ﺣﺎﺿﺮ، برای اولین بار ﺑﺎ استفاده از نتایج آزﻣﺎﯾﺶﻫﺎی انجام شده توسط نگارندگان مقاله روی اﻧﻮاع ﻣﺨﺘﻠﻒ ﻣﺼﺎﻟﺢ ﺳﻨﮕﺮﯾﺰه‌ای، به بررسی تاثیر نیروی درگ بر روی دقت محاسبات نیمرخ سطح آب با استفاده از تئوری جریان‌های متغیر تدریجی پرداخته شده است. نتایج نشان می‌دهد که با در نظر گرفتن نیروی درگ، دقت محاسبات نیمرخ سطح آب در جریان ماندگار به‌ویژه در بخش‌هایی که انحنای جریان زیاد است به‌طور قابل‌توجهی افزایش می‌یابد و می‌توان به جواب‌های امیدوارکننده‌ای دست‌یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Longitude Profile Analysis of Water Table in Rockfill Materials Using Gradually Varied Flow Theory with Consideration of Drag Force

نویسندگان [English]

  • Mohammad Gudarzi 1
  • Jalal Bazargan 2
  • Seyyed Mohammad Shoaei 3
1 M.Sc. Student in Water and Hydraulic Structures, Department of Civil Engineering, Faculty of Engineering, Zanjan University, Zanjan, Iran
2 Associate Professor, Department of Civil Engineering, Faculty of Engineering, Zanjan University, Zanjan, Iran
3 Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Zanjan University, Zanjan, Iran
چکیده [English]

The flow analysis in rockfill materials is often fulfilled by solving differential equations that combine non-linear equation [i=mvn] and continuity equation. This differential equation has first been developed by Parkin. It's solution by finite difference method is massive and time consuming, proportion to boundary conditions at this particular case. These calculations would end up with more significant problems where the water table profile is not specified inside the rockfill material. For flow analysis in rockfill material, another method can be used which is based on the gradually varied flow theory. This method is very simple and less massive. Literature review shows a significant error in parts of flow in which the curvature of the streamlines is high, if drag force is not considered in the gradually varied flow theory. In the current study for the first time, using experimental data of different rockfill materials, the effect of drag force on water profile calculation accuracy was investigated considering gradually varied flow theory. The results show by considering drag force, the calculation accuracy of water profile at permanent flow, especially in high flow curve, would significantly increase and a promising results could be obtained.

کلیدواژه‌ها [English]

  • Porous media
  • Rockfill materials
  • Gradually varied flow
  • Non-Darcy flow
  • Drag force
Ahmed, N. & Sunada, D.K. (1969). Nonlinear flow in porous media. Journal of the Hydraulics Division, 95(6), 1847-1858.
Ansari, E., SedghiAsl, M. & Mansoori, P. (2016). Evaluation of the accuracy of the SEEP/W computer code in estimating flow rate and water profile in coarse-grained porous media. Journal of Iran Soil and Water Research, 47(2), 355-362. (In Farsi)
Bari, R. & Hansen, D. (2002). Application of gradually-varied flow algorithms to simulate buried streams. Journal of Hydraulic Research, 40(6), 673-683.
Bazargan, J. & Byatt, H. (2002). A new method to supply water from the sea through rockfill intakes. Paper presented at the 5th international conference on coasts, ports and marine structures (ICOPMAS). (In Farsi)
Bazargan, J., & Byatt, H. (2003). Determination of roughness coefficient of rockfill materials using of resolution method. Paper presented at the 6th international conference on civil engineering (ICCE 2003). (In Farsi)
Bazargan, J., & Shoaei, M. (2010). Analysis of non-darcy flows in rockfills using gradually varied flow theory. Journal of Civil Engineering and Surveying, 44(2). (In Farsi)
Bazargan, J. & Shoaei, M. (2006). Application of gradually varied flow algorithms to simulate buried streams.
Bazargan, J. & Shoaei, M. (2007). Investigation of velocity head efficacy in analyzing of Non-Darcy flow in rockfill materials. Paper presented at the 6th Iranian conference of hydraulics, Shahrekord, Iran. (In Farsi)
Chabokpour, J., & Amiri-Takaldani, E. (2017). Numerical-Laboratory Modeling of Longitudinal Profile of Water in Coarse Porous Media. Journal of Iranian Water Research, 11(26), 81-90. (In Farsi)
Cheng, N. (1997). Simplified Settling Velocity Formula for Sediment Particle. Journal of Hydraulic Engineering, 123(2), 149-152.
Chien, S.F. (1994). Settling velocity of irregularly shaped particles. SPE Drilling & Completion, 9(04), 281-289.
Curtis, R. P., & Lawson, J. D. (1967). Flow over and through rockfill banks. Journal of the Hydraulics Division.
Ergun, S., & Orning, A. A. (1949). Fluid flow through randomly packed columns and fluidized beds. Industrial & Engineering Chemistry, 41(6), 1179-1184.
Ganser, G. H. (1993). A rational approach to drag prediction of spherical and nonspherical particles. Powder technology, 77(2), 143-152.
Haider, A, & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder technology, 58(1), 63-70.
Hansen, D., Garga, V. K., & Townsend, D. R. (1995). Selection and application of a one-dimensional non-Darcy flow equation for two-dimensional flow through rockfill embankments. Canadian Geotechnical Journal, 32(2), 223-232.
Hosseni, M. (2000). Statistical evaluation of the empirical equation that estimate hydraulic parameters flow through rockfill. Stoch. Hydraulics.
Joy, DM, Lennox, WC., & Kouwen, N. (1991). Particulate transport in a porous media under non-linear flow conditions. Journal of Hydraulic Research, 29(3), 373-385.
Kadlec, R. H., & Knight, R. L. (1996). Treatment Wetlands.
McWhorter, D. B., & Sunada, D. K. (1977). Ground-water hydrology and hydraulics: Water Resources Publication.
Scheidegger, A. E. (1958). The physics of flow through porous media. Soil Science, 86(6), 355.
SedghiAsl, M., Rahimi, H., Farhoudi, J., & Vali-samani, J. M.. (2011). Analysis of flow profiles within coarse-grained porous media. Journal of Iranian Water Research, 4. 81-88,(7). (In Farsi)
Sidiropoulou, M. G., Moutsopoulos, K. N., & Tsihrintzis, V. A. (2007). Determination of Forchheimer equation coefficients a and b. Hydrological Processes: An International Journal, 21(4), 534-554.
Stephenson, D. (1979). Rockfill in hydraulic engineering (Vol. 27): Elsevier.
Swamee, P. K., & Ojha, Ch. Sh. P. (1991). Drag coefficient and fall velocity of nonspherical particles. Journal of Hydraulic Engineering, 117(5), 660-667.
Wang, X. H., & Liu, Zh.F. (2004). The Forchheimer equation in two-dimensional percolation porous media. Physica A: Statistical Mechanics and its Applications, 337(3-4), 384-388.
Ward, JC. (1964). Turbulent flow in porous media. Journal of the Hydraulics Division, 90(5), 1-12