مقیاس‌سازی معادله بیلان حجمی در آبیاری نواری

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران ،

چکیده

در اکثر موارد به منظور ارزیابی آبیاری نواری از داده­های پیشروی آب در نوار استفاده می­گردد. با توجه به متغیر بودن نوع خاک و همچنین شرایط اولیه و مرزی در آبیاری نواری، سرعت پیشروی آب در نوار­های مختلف بسیار متفاوت می­باشد. روش مقیاس­سازی به عنوان ابزاری برای کاهش داده­های اندازه­گیری در مسائل آب و خاک مورد استفاده قرار می­گیرد. هدف از این پژوهش مقیاس­سازی معادله بیلان حجمی و ارائه معادله ساده­ای به­منظور تعیین پیشروی آب در نوار است. برای این منظور از داده­های 21 نوار شامل نوارهای کشت نشده و نوارهای کشت شده شامل شیب­های 001/0 تا 005/0، زبری 017/0 تا 211/0، طول 4/91 تا 100 متر و دبی 08/0 تا 16/0 مترمکعب بر دقیقه بر متر مورد استفاده شد. عوامل مقیاس به­گونه­ای تعیین شد که معادله بیلان حجم مستقل از شرایط اولیه و خاک شود. نتایج نشان داد که منحنی­های پیشروی مقیاس­شده به معادله­ی مشخصی میل می­کردند، در نتیجه معادله­های تجربی به حل­های مقیاس شده برازش داده شد. معادله ارایه شده از حالت بدون بعد خارج شده و برای پیش­بینی پیشروی آب در نوار مورد ارزیابی قرار گرفت. مقدار ریشه میانگین مربعات خطای پیشروی مشاهده و محاسبه شده با معادله ارائه شده در این تحقیق برای نوارهای مختلف در اکثر موارد کمتر از 5 دقیقه  و مقدار میانگین درصد مطلق خطا کمتر از 10 درصد بود. ضریب تعیین (R2) بین پیشروی نهایی به­دست آمده از معادله توانی و پیشروی مشاهده شده 93/0 بود. به­طور کلی شکل ساده معادله و عدم وابستگی به نوع خاک از مزایای این روش است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Scaling of Volume Balance Equation in Border Irrigation

نویسنده [English]

  • mohammad mahdi chari
Assistance Professor ,Water Engineering Department, Faculty of water and soil, University of Zabol, zabol, Iran,
چکیده [English]

In most cases, advance data is used for evaluating border irrigation. Due to soil variability, as well as initial and boundary conditions in border irrigation, water advance rate varies considerably in different borders. Scaling techniques helped to reduce the required measurements in soil and water issues. The aim of this study was to scale the volume balance equation and provide a simple equation to determine water advance in border irrigation. For this purpose, 21 borders, including cultivated and uncultivated borders with slope of 0.001 to 0.005, roughness of 0.017 to 0.211, length of 91.4 to 100 m, and discharge rate of  0.08 to 0.16 m3/m/min were used. Scale factors were defined such that the volume balance equation remained independent from soil and initial conditions. The scaled advance curves showed certain patterns. As a result, empirical equations were fitted to the scaled solutions. The empirical equation was evaluated for prediction of water advance in the border. The root mean square error obtained from the observed and calculated values by the experimental equation for the different borders, in most cases, was less than 5 minutes, and the mean absolute error value was less than 10%. The determination coefficient of the final advance from observed and calculated values by the experimental equation was 0.93. In general, simple form and independent to the soil type equations presented are advantages of this method.

کلیدواژه‌ها [English]

  • Border irrigation
  • Volume balance
  • Scaling
  • Empirical equation
Adamala, S. Raghuwanshi N.S. and Mishra, A. (2014). Development of Surface Irrigation Systems Design and Evaluation Software (SIDES). Computers and Electronics in Agriculture 100: 100–109.
Alazba, A.A. (1999). Dimensionless advance curves for infiltration families.Agric. Water Manage. 41: 115-131.
Bautista E., and Wallender WW. (1985). Spatial variability of infiltration in furrows. Trans. ASAE. 28, 1846–1851.
Bautista, E. Strelkoff, T. and Clemmens. A.J. (2012). Improved Surface Volume Estimates for Surface Irrigation Volume-Balance Calculations. Journal of Irrigation and Drainage .138:715-726.
Chari, M.M., Davari, K., Ghahraman, B., and Ziaiei, A.N. (2019). General equation for border advance and recession of water in border irrigation. Journal of Irrigation and Drainage.DOI: 10.1002/ird.2342.
Childs, J., Wallender, W. W., & Hopmans, J. W. (1993). Spatial and seasonal variation of furrow infiltration. Journal of Irrigation and Drainage engineering, 119(1): 74-90.
Elliott, R.L., Walker, W.R. and Skogerboe. G.V. (1983). Furrow irrigation advance rate: a dimensionless approach. Transactions of the ASAE, 26 (6): 1722-1725.
Gonzalez, C., Cervera, L., and Moret-Fernandez, D. 2011. Basin irrigation design with longitudinal slope. Agriculture water management. 98(10): 1516-1522.
Guzmán-Rojo; D.P., Bautista, E., Gonzalez-Trinidad, J.G., and Bronson, K.F. (2019).Variability of furrow infiltration and estimated infiltration parameters in a macroporous Soil. Journal of irrigation and drainage engineering, 145(2): 04018041.
Khatri, K. L., and Smith, R. J. (2006). Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrigation Science, 25(1): 33-43.
Koech RK, Smith RJ, Gillies MH. (2014a). A real-time optimisation system for automation of furrow irrigation. Irrigation science, 32(4), 319-327.
Koech RK, Smith RJ, Gillies MH. (2014b). Evaluating the performance of a real-time optimisation system forfurrow irrigation. Agricultural Water Management 142: 77–87.
Kosugi, K. and Hopmans, J.W. (1998). Scaling water retention curves for soils with lognormal pore-size distribution. Soil Science Society of America Journal. 62: 1496–1504.
Langat, P. K., Smith, R. J., and Raine, S. R. (2008).Estimating the furrow infiltration characteristic from a single advance point. Irrigation Science, 26(5): 367-374.
Miller, E. E., & Miller, R. D. (1956). Physical theory for capillary flow phenomena. Journal of Applied Physics, 27(4), 324-332.
Oyonarte, N. A., Mateos, L., and Palomo, M. J. (2002). Infiltration variability in furrow irrigation. Journal of Irrigation and Drainage Engineering, 128(1), 26-33.
Poozan, M.T., Chari, M. M., Afrasiab, P. and kahkhamoghadam, P. (2019). Application of scaling in estimating soil infiltration characteristics. Iranian journal of Soil and water research. (In Farsi)
Ram, R. S.(1969). Hydraulics of recession flow in border irrigation system. M.S. thesis. Indian Inst. of Technol. Kharagpur, India.
Ram, R. S.(1972). Comparison of infiltration measurement techniques. J. Agric. Eng. India. 9(2): 67-75.
Ram, R. S. and Lal,R. (1971). Recession flow in border irrigation. J. Agric. Eng. India, 8(3): 62-70.
Roth, R. L. (1974). Data for border irrigation models. Trans.ASAE. 17 (1): 157-161.
Sadeghi,M., Ghahraman,B., Ziaei,A.N., Davary,K. and Reichardt,K. (2012). Invariant solutions of Richard'S equation for Water movement in dissimilar Soils. Soil Science Society of America Journal, 76(1): 1-9.
Schwankl LJ, Raghuwanshi, NS, and Wallender WW. (2000). Furrow irrigation performance under spatially varying conditions. Journal of irrigation and drainage engineering, 126, 355–361.
Strelkoff, T. and Clemmens, A. J. (1981). Dimensionless Stream Advance in Sloping Borders.J Journal of irrigation and drainage engineering, 107(4): 361-382.
Strelkoff, T. and Clemmens. A.J. (1994). Dimensional analysis in surface irrigation. Irrigation Science, 15 (2-3): 57-82
Strelkoff, T. and Katopodes, N. D. (1977). Border Irrigation Hydraulics with Zero Inertia. Journal of irrigation and drainage engineering, 103(3): 325-342.
Valiantzas, J. D. (2000). Surface water storage independent equation for predicting furrow irrigation advance. Irrigation Science, 19, 115–123.
Yitayew, M. and Fangemeier, D.D. (1984). Dimensionless runoff curves for irrigation borders. Journal of irrigation and drainage engineering, 110: 179-191.