Akumaga, U., Tarhule, A. and Yusuf, A. A. (2017). Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and Forest Meteorology, 232, 225–234.
Ata-Ul-Karim, S. T., Yao, X., Liu, X., Cao, W. and Zhu, Y. (2014). Determination of Critical Nitrogen Dilution Curve Based on Stem Dry Matter in Rice. PLoS ONE, 9(8), https://doi.org/10.1371/journal.pone.0104540.
Berenguer, P., Santiveri, F., Bioxadera, J. and Lioveras, J. (2009). Nitrojen fertilization of irrigated maize under Mediterranean conditions. European Journal of Agronomy. 30(3), 163-171.
Guler, S. (2006). Developments on fertilizer consumption of the world and Turkey. Journal of the Faculty of Agriculture, 21(2), 243-248.
Harmanto, V.M.S., M.S. Babel and H.J. Tantau. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manage.71:225-242
Hasani, A. and Nourzadeh-Haddad, M. (2016). Effect of Ammonium Nitrate and Free Amino Acids on the Nitrate
Accumulation in Radish. Water and Soil Science- University of Tabriz, 26(4.1), 67-78. (In Farsi)
Hopkins, W. G. (2004). Introduction to Plant Physiology (3th ed.). New York: Wiely. pp. 557.
Hsiao, T. C., Heng, L., Steduto, P., Rojas-lara, B., Raes, D. and Fereres, E. (2009). AquaCrop the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448–459.
Jamieson, P. D., Porter, J. R. and Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337-350.
Khorsand, A., Verdinejad, V. R. and Shahidi, A. (2014). Comparison of FAO Aquacrop and SWAP agro-hydrological models to simulate water and salt transport during growing season of winter wheat. International Journal of Biosciences. 11(4), 223-233.
Kroes, J. G. and Van Dam, J. C. (2008). Reference manual SWAP version 3.2. Alterra green world Research. Wagennigen. Report 1649. Avaiabel at: http://www.swap. Alterra.nl.
Malakouti, M. J. (2011). Relationship between Balanced Fertilization and Healthy Agricultural Products (A Review). Journal of Crop and Weed Ecophysiology, 4(16), 133-152. (In Farsi)
Patrignani, A. and Ochsner, T.E.(2015). Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agronomy Journal, 107(6), 2312-2320.
Powlson, D. S., Addiscott, T. M. and Benjamin, N. (2008). When does nitrate become a risk for humans. Journal of Environmental Quality. 37(2), 291–295.
Raes, D., Steduto, P., Hsiao, T. C. and Fereres, E. (2009). AquaCrop - the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), 438–447.
Raes, D., Steduto, P., Hsiao, T. C. and Fereres, E. (2012). AquaCrop Reference Manual, AquaCrop version 4.0. Rome, Italy: FAO.
Rahimikhoob, H., Sotoodehnia, A. and Massahbavani, A. R. (2014). Calibration and Evaluation of AquaCrop for Maize in Qazvin Region. Iranian Journal of Irrigation and Drainage, 8(1), 108-115. (In Farsi)
Ramos, T. B., Šimunek, J., Goncalves, M. C., Martins, J. C., Prazeres, A. and Pereira, L.S. (2012). Two dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management. 111, 87–104.
Ranjbar, A., Rahimikhoob, A. and Ebrahimian, H. (2017). Evaluating Semi-Quantitative Approach of the AquaCrop Model for Simulating Maize Response to Nitrogen Fertilizer. Iranian Journal of Irrigation and Drainage, 11(2), 286-298. (In Farsi)
Russo, D. and Bakker, D. (1986). Crop water production function for sweet corn and cotton irrigated and saline water. Soil science societyand American journal. 51(6), 1554-1562.
Sepaskhah, A. R, Bazafshan, A. R. and Shirmohammadi-Aliakbbarian, Z. (2006). Development and evaluation of model for yield production of wheat, maize and sugarbeet under water and salt stresses. Biosystems enginerring. 93(2), 139-152.
Steduto, P., Hsiao, T. C., Raes, D. and Fereres, E. (2009). AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426-437.
Steduto, P., Hsiao, T. C. and Fereres, E. (2007). On the conservative behavior of biomass water productivity. Irrigation Science. 25(3), 189–207.
Stefanelli, D. S., Brady, S., Winkler, R. B., Jones, J. and Tomkins, B. T. (2012). Lettuce (Lactuca sativa L.) growth and quality response to applied nitrogen under hydroponic conditions. Acta Agriculturae, 927, 353–360.
Stockle, C. O., Donatelli, M. and Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3), 289-307.
Stricevic, R., Dzeletovic, Z., Djurovic, N. and Cosic, M. (2014). Application of the AquaCrop model to simulate the biomass of Miscanthus x giganteus under different nutrient supply conditions. GCB Bioenergy, 7(6), 1203-1210.
Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, R., Vanuytrecht, E., Abrha, B., Diels, J. and Raes, D. (2014). A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the Aquacrop procedure. Journal of Agricultural Science, 153(7), 1218-1233.