Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G., Pourbabaee, A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant, Soil and Environment, 61(11), 475-482.
Beesley, L., Moreno-Jiménez, E.,Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution, 159(12), 3269-3282.
Cha, J.S., Park, S.H., Jung, S.C., Ryu,C., Jeon, J.K., Shin, M.C., Park, Y.K. (2016). Production and utilization of biochar: a review. Journal of Industrial and Engineering Chemistry, 40, 1-15.
Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., Ok, Y.S. (2016). Adsorption of Cd by peanuthusks and peanut husk biochar from aqueous solutions. Ecological Engineering, 87, 240-245.
Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., Yan, Z. (2017). Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of colloid and interface science, 506, 355-364.
Ding, Z., Hu, X., Wan, Y., Wang, S., Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239-245.
Fan, S., Li, H., Wang, Y., Wang, Z., Tang, J., Tang, J., Li, X. (2018). Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge withtea waste. Research on Chemical Intermediates, 44(1), 135-154.
Freundlich, H. (1909). Kolloidchemie. Akademischer Verlagsgeselschaft, Leipzig.
Gaskin, J.W., Steiner, C., Harris, K., Das, K., Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061-2069.
Goh, K.-H., Lim, T.-T., Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: a review. Water research, 42(6-7), 1343-1368.
Hamzenejad, R., Sepehr, E., Samadi, A.,Rasouli Sadaghiani., Khodaverdiloo, H. (2017). Kinetic and thermodynamic study of cadmium (Cd) adsorption by grape and apple pruning residues biochars. Journal of Environmental Studies, 43(3), 401-416.
Ho, Y.S. and McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
Juang, R.-S., Chen, M.-L. (1997). Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins. Industrial & Engineering Chemistry Research, 36(3), 813-820.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.
Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295.
Li, F., Shen, K., Long, X., Wen, J., Xie, X., Zeng, X., Liang, Y., Wei, Y., Lin, Z., Huang, W. (2016). Preparation and characterization of biochars from Eichornia crassipes for cadmium removalin aqueous solutions. PloS one, 11(2), 132-148.
Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., Wu, H. (2017). Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb (II) and Cd (II). ACS Sustainable Chemistry & Engineering, 5(6), 5049-5058.
Liu, Y., Xiao, T., Ning, Z., Li, H., Tang, J., Zhou, G. (2013). High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. Applied geochemistry,137,149-156.
Luo, M., Lin, H., Li, B., Dong, Y., He, Y., Wang, L. (2018). A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresource technology, 259, 312-318.
Maia, C.M.B., Madari, B.E., Novotny, E.H. (2011).Advances in biochar research in Brazil. Embrapa Solos-Artigo em periódico indexado (ALICE).
Mohan, D., Pittman Jr, C.U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gómez-Serrano, V., Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of colloid and interface science, 310(1), 57-73.
Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil science, 174(2), 105-112.
Ouředníček, P., Hudcová, B., Trakal, L., Pohořelý, M., Komárek, M. (2019). Synthesis of modified amorphous manganese oxide using low-cost sugars andbiochars: Material characterization and metal (loid) sorption properties. Science of The Total Environment.
Qi, F., Yan, Y., Lamb, D., Naidu, R., Bolan, N.S., Liu, Y., Ok, Y.S., Donne, S.W., Semple, K.T. (2017). Thermal stability of biochar and its effectson cadmium sorption capacity. Bioresource technology, 246, 48-56.
Rahmani, A., Mousavi, H.Z., Fazli, M. (2010). Effect of nanostructure alumina on adsorption of heavy metals. Desalination, 253(1-3), 94-100.
Rajapaksha, A.U., Chen, S.S., Tsang, D.C., Zhang,M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, 276-291.
Reddy, D.H.K., Lee, S.-M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103.
Ruthiraan, M., Mubarak, N.M., Thines, R.K., Abdullah, E.C.,Sahu, J.N., Jayakumar, N.S., Ganesan, P. (2015). Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd 2+ ions from wastewater. Korean Journal of Chemical Engineering, 32(3), 446-457.
Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S., Yan, J. (2019). Enhanced adsorption for Pb (II) and Cd (II) of magnetic rice husk biochar by KMnO 4 modification. Environmental Science and Pollution Research, 1-12.
Tan, Z., Wang, Y., Kasiulienė, A., Huang, C., Ai, P. (2017). Cadmium removal potential by rice straw-derived magnetic biochar. Clean Technologies and Environmental Policy, 19(3), 761-774.
Temkin, M. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim. URSS, 12, 327-356.
Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Číhalová, S., Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource technology, 203, 318-324.
Wang, H., Gao, B., Fang, J., Ok, Y.S., Xue, Y., Yang, K., Cao, X. (2018). Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecological Engineering, 121, 124-129.
Wongrod, S., Simon, S., van Hullebusch, E.D., Lens, P.N., Guibaud, G. (2018). Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As (III and V) and Cd (II) sorption. International biodeterioration & biodegradation, 135, 96-102.
Yang, J., Ma, T., Li, X., Tu, J., Dang, Z., Yang, C. (2018). Removal of Heavy Metals and Metalloids by Amino-Modified Biochar Supporting Nanoscale Zero-Valent Iron. Journal of environmental quality.
Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L. (2011). Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource technology, 102(10), 6273-6278.
Yu, J., Zhu, Z., Zhang, H., Qiu, Y., Yin, D. (2018). Mg–Fe layered double hydroxide assembled on biochar derived from rice husk ash: facile synthesis and application in efficient removal of heavy metals. Environmental Science and Pollution Research, 25(24), 24293-24304.
Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341-349.
Zhang, Z., Abuduwaili, J., Jiang, F. (2015). Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China. Huan jing ke xue= Huanjing kexue, 36(2), 490-496.