تأثیر منابع مختلف سیلیسیم و نانو سیلیسیم بر برخی پاسخ‌های مورفو فیزیولوژیکی گیاه استویا rebaudiana Bertoni) (Stevia

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی،دانشگاه تهران، کرج ایران

2 گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 گروه علوم باغبانی و فضای سبز، دانشکده علوم و مهندسی کشاورزی، دانشگاه تهران، کرج ایران

4 مدیر عامل شرکت سپاهان رویش

چکیده

‌یکی از راهکارهای بهبود امنیت غذایی جمعیت رو به افزایش جهان، افزایش مقدار تولید در واحد سـطح است. برخی عناصر غذایی نظیر سیلیسیم ضمن بهبود کارایی جذب سایر عناصر، کیفیت تولید را نیز افزایش می‎دهند. در این پژوهش، تأثیر منابع مختلف سیلیسیم شامل سیلیکات پتاسیم در دو سطح 400 و 200 میلی‌گرم بر کیلوگرم، سیلیکات کلسیم در دو سطح 400 و  200 میلی‌گرم بر کیلوگرم، هیومیستار سیلیسیم در دو سطح 400 و 200 میلی‌گرم بر کیلوگرم، نانو سیلیسیم در دو سطح 100 و 50 میلی‌گرم بر کیلوگرم و تیمار شاهد بر پاسخ‌های مورفوفیزیولوژیکی گیاه دارویی استویا بررسی شد. پس از سه ماه دوره کاشت و داشت، گیاهان برداشت و ویژگی‌های وزن‌تر و خشک ساقه و وزن‌تر و خشک‌ریشه، ارتفاع و  قطر ساقه، حجم ریشه و سطح برگ به‌عنوان شاخص‌های مورفوفیزیولوژیکی گیاه، کلروفیل برگ و همچنین غلظت عناصر سیلیسیم، فسفر، پتاسیم در ساقه گیاه، و همچنین گلیکوزیدهای موجود در برگ استویا، شامل استویوزاید، ریبودیوزاید A و B اندازه‌گیری شد. نتایج حاکی از اثر معنی‌دار کاربرد سیلیسیم بر وزن‌تر و خشک ساقه و ریشه، ارتفاع ساقه، حجم ریشه، قطر ساقه، سطح برگ و شاخص کلروفیل برگ بود. کاربرد تیمارهای 200 سیلیکات کلسیم و 100 نانو سیلیسیم و 200 هیومیستار سیلیسیم بیش­ترین وزن‌تر ساقه را نسبت به شاهد حاصل کرد و تیمار 100 میلی‌گرم بر کیلوگرم نانو سیلیسیم به ترتیب سبب افزایش 55، 64 و 35 درصدی عناصر ذکرشده در مقایسه با تیمار شاهد شد. تیمار 400 میلی‌گرم بر کیلوگرم هیومیستار سیلیسیم بیش­ترین درصد استویوزاید (23/5)، ریبودیوزاید A با (67/0) را نشان دادند. با توجه به اثربخشی کاربرد عنصر سیلیسیم بر پاسخ‌های مورفوفیزیولوژی، تغذیه‌ای و بهبود کیفیت قندهای استویوزاید و ریبودیوزاید، توصیه می‌شود در کنار مصرف بهینه عناصر غذایی به نقش این عنصر ارزشمند به‌ویژه به‌عنوان یک عنصر ضد تنش، توجه بیشتری معطوف گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Silicon Sources and Nano Silicon on Some Morphophysiologic Response of Stevia rebaudiana Bertoni

نویسندگان [English]

  • reza malmir 1
  • Babak Motesharezadeh 2
  • Leyla Tabrizi 3
  • Farzaneh Bekhradi 4
1 Soil Science Department, Faculty of Engineering and Technology, University of Tehran, Karaj, Iran.
2 Soil Science Department, Faculty of Engineering and Technology,University College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
3 Department of Horticulture, Faculty of Science and Engineering, University of Tehran, Karaj, Iran
4 Manager of Sepahan Rooyesh Company
چکیده [English]

One of the ways to improve the food security of a growing population of the world is to increase the amount of production per unit area. Some of the nutrient elements such as silicon not only increase nutrient use efficiency but also increment product quality. In this research, the effects of various sources of silicon included Potassium silicate, Calcium silicate, Humistar Si in two levels 200 and 400 mg/kg and Nano-silicon in two levels 50 and 100 mg/kg and Control treatment on morphophysiological responses of the herb of the stevia plant were examined. After three months, the plants were harvested and fresh and dry weight of shoot and root, height and diameter of the shoot, root volume and leaf area as morphophysiological indices of the plant, and leaf chlorophyll, the concentration of silicon, phosphorus, potassium in the shoots, and Glycosides in the stevia leaf, including Stevioside, Rebaudioside A and B were measured. The results showed the effects of silicon sources on the fresh and dry weight of shoot and root, height of shoot, root volume, stem diameter, leaf area and leaf chlorophyll index were significant. The treatments of calcium silicate-200, Nanosilicon-100, and Humistar silicon-200 yielded the highest fresh weight of the shoot compared to the control samples and Nanosilicon-100 led to an increase of 55, 64, and 35% of mentioned elements compared to the control treatment. The treatment of Humistar silicon-400 showed the highest amounts of Stevioside (5.23%), Rebaudioside A (0.67%). Considering the effectiveness of the use of silicon element on morpho-physiological and nutritional responses, and improving the quality of Stevioside and Rebaudioside sugars, it is recommended that along with the optimal use of nutrients, more attention should be paid to the role of this valuable element.

کلیدواژه‌ها [English]

  • Stevia medicinal herb
  • Silicon
  • Morpho-physiological
  • Essential elements
  • secondary metabolites
Adatia, M. H., and Besford, R. T. (1986). The effects of silicon on cucumber plants grown in recirculating nutrient solution. Annals of Botany, 58(3), 343-351.
Agarie, S. (1993). Effect of silicon on growth, dry matter production and photosynthesis in rice plants. Crop Prod. Improve. Tech. Asia., 225-234.
Azizi, M., Abdolzadeh, A., Mehrabanjoubani, P., and Sadeghipour, H. R. (2016). Evaluation of effect of silicon on NaCl tolerance in annual Medicago scutellata L. Iranian Journal of Field Crops Research, 14(1).
Bandani, M., and Abdolazadeh, A. (2007). Effects of silicon nutrition on salinity tolerance of Puccinellia distans (jacq.) parl.
Bayat, H., Nemati, S., Selahvarzi, Y., and Abdollahi, S. A. (2013). The effect of Silicon on the growth, evapotransportation and the reproductive yield of the Persian Petunia (Petunia Hybrida).
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), 464-465.
Chalmardi, Z. K., Abdolzadeh, A., and Sadeghipour, H. R. (2014). Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta physiologiae plantarum, 36(2), 493-502.
Chen, D., Cao, B., Wang, S., Liu, P., Deng, X., Yin, L., and Zhang, S. (2016). Silicon moderated the K deficiency by improving the plant-water status in sorghum. Scientific reports, 6, 22882.
Cottenie, A., Camerlynck, R., Verloo, M., and Dhaese, A. (1980). Fractionation and determination of trace elements in plants, soils and sediments. Pure and Applied Chemistry, 52(1), 45-53.
Crooks, Regan, and Peter Prentice. "Extensive investigation into field based responses to a silica fertiliser." Silicon 9.2 (2017): 301-304.
Cuong, T. X., Ullah, H., Datta, A., and Hanh, T. C. (2017). Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci, 24(5), 283-290.
Datnoff, L. E., Snyder, G. H., and Korndörfer, G. H. (Eds.). (2001). Silicon in agriculture (Vol. 8). Elsevier.
Dini, M., and Babakhanlou, P. (2002). The checklist of useful plants.
Elliott, C. L., and Snyder, G. H. (1991). Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agricultural and Food Chemistry, 39(6), 1118-1119.
Epstein, E. (1999). Silicon. Annual review of plant biology, 50(1), 641-664.
Fernández, V., and Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Frontiers in plant science, 4, 289.
Fronza, D., and Folegatti, M. V. (2003). Water consumption of the estevia (Stevia rebaudiana (Bert.) Bertoni) crop estimated through microlysimeter. Scientia Agricola, 60(3), 595-599.
Ge, Y., Schimel, J. P., and Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental science and technology, 45(4), 1659-1664.
Gholizadeh, A., Amin, M. S. M., Anuar, A. R., and Aimrun, W. (2009). Evaluation of SPAD chlorophyll meter in two different rice growth stages and its temporal variability. European Journal of Scientific Research, 37(4), 591-598.
Goenadi, D. H. (1983). Water tension and fertilization of Stevia rebaudiana Bertoni on Oxidropudalf soil. Menara perkebunan, Horticulture Abstracts, 54, 2882.
Gonzalo, M. J., Lucena, J. J., and Hernández-Apaolaza, L. (2013). Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant physiology and biochemistry, 70, 455-461.
Goyal, S. K., Samsher, G. R., and Goyal, R. K. (2010). Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr, 61(1), 1-10.
Grossman, R. B., and Reinsch, T. G. (2002). 2.1 Bulk density and linear extensibility. Methods of soil analysis: Part 4 physical methods, (methodsofsoilan4), 201-228.
Haghighi, M., Afifipour, Z., and Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci, 6(16), 87-90.
Heckman, Joseph. "Silicon: a beneficial substance." Better crops 97.4 (2013): 14-16.
Helaly, M. N., El-Hoseiny, H., El-Sheery, N. I., Rastogi, A., and Kalaji, H. M. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant physiology and biochemistry, 118, 31-44.
Helmke, P. A., and Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 551-574.
Kafi, M., and Rahimi, Z. (2011). Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition, 57(2), 341-347.
Kamenidou, S., Cavins, T. J., and Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123(3), 390-394.
Kamenidou, S., Cavins, T. J., and Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123(3), 390-394.
Kennelly, E. J. (2001). Sweet and non-sweet constituents of Stevia rebaudiana. In Stevia (pp. 81-99). CRC Press.
Kolb, N., Herrera, J. L., Ferreyra, D. J., and Uliana, R. F. (2001). Analysis of sweet diterpene glycosides from Stevia rebaudiana: improved HPLC method. Journal of agricultural and food chemistry, 49(10), 4538-4541.
Kuo, S. (1996). Phosphorus. p. 869–919. DL Sparks (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI. Phosphorus. p. 869–919. In DL Sparks (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI.
Lemraski, M. G., Normohamadi, G., Madani, H., Abad, H. H. S., and Mobasser, H. R. (2017). Two Iranian rice cultivars’ response to nitrogen and nano-fertilizer. Open Journal of Ecology, 7(10), 591.
Liang, Y. C., Sun, W. C., Si, J., and Römheld, V. (2005). Effects of foliar‐and root‐applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 54(5), 678-685.
Ma, J. F., and Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in plant science, 11(8), 392-397.
Madan, S., Ahmad, S., Singh, G. N., Kohli, K., Kumar, Y., Singh, R., and Garg, M. (2010). Stevia rebaudiana(Bert.) Bertoni-a review.
McKeague, J. A., and Cline, M. G. (1963). Silica in soil solutions: II. The adsorption of monosilicic acid by soil and by other substances. Canadian Journal of Soil Science, 43(1), 83-96.
Mehrabanjoubani, P., Abdolzadeh, A., Sadeghipour, H. R., and Aghdasi, M. (2015). Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere25(2), 192-201.
Mohaghegh, P., Shirvani, M., and Ghasemi, S. (2010). Silicon application effects on yield and growth of two cucumber genotypes in hydroponics system. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 1(1), 35-40.
Mohammadkhani, A., Mohaghegh, P., and Tehrani, A. F. (2016). Effect of silicon on increasing plant tolerance to oxidative stress by powdery mildew in pumpkin (Cucurbita pepo, var. styriaca). Journal of Science and Technology of Greenhouse Culture, 7(27).
Motesharezadeh, B., and Mousavi, S.M. (2018). Balanced management of plant nutrition and 100 applied points in foliar fertilization, Jehat Daneshgahi University of Tehran Press, 280 Pp. Tehran, Iran.
Nelson, D. W., and Sommers, L. (1982). Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 539-579.
Nepovím, A., and Vaněk, T. (1998). In vitro propagation of Stevia rebaudina plants using multiple shoot culture. Planta medica, 64(08), 775-776.
Olsen, S. R., Sommers, L. E., and Page, A. L. (1982). Methods of soil analysis. Part, 2, 403-430.
Pati, S., Pal, B., Badole, S., Hazra, G. C., and Mandal, B. (2016). Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Communications in Soil Science and Plant Analysis47(3), 284-290.
Pawar, R. S., Krynitsky, A. J., and Rader, J. I. (2013). Sweeteners from plants—with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and bioanalytical chemistry, 405(13), 4397-4407.
Peyvast, G. A., Zare, M., and Samizade, L. H. (2008). Interaction of silicon and on salinity stress on lettuce growth under NFT system condition.
Pryluka, M., and de Cernadas, R. R. (1985). Note. Determination of the stevioside content in leaves of Stevia rebaudiana Bertoni. Revista de Agroquimica y Tecnologia de Alimentos (Spain).
Ramesh, K., Singh, V., and Megeji, N. W. (2006). Cultivation of stevia [Stevia rebaudiana (Bert.) Bertoni]: A comprehensive review. Advances in Agronomy, 89, 137-177.
Renwick, A. G. (2008). The use of a sweetener substitution method to predict dietary exposures for the intense sweetener rebaudioside A. Food and chemical toxicology, 46(7), S61-S69.
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 417-435.
Ryan, J., Estefan, G., and Rashid, A. (2001). Soil and plant analysis. Laboratory Manual. International Centre for Agricultural Research in the Dry Areas. Aleppo, Syria.
Savvas, D., and Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66-81.
Savvas, D., and Ntatsi, G. (2015). Biostimulant activity of silicon in horticulture. Scientia Horticulturae, 196, 66-81.
Sheu, B. W., Tamai, F., and Motoda, Y. (1987). Effects of boron on the growth, yield and contents of stevioside and rebaudioside A of kaa he-e (Stevia rebaudiana Bertoni). Journal of Agricultural Science-Tokyo Nogyo Daigaku (Japan).
Singh, A. K., Singh, R., and Singh, K. (2005). Growth, yield and economics of rice (Oryza sativa) as influenced by level and time of silicon application. Indian Journal of Agronomy, 50(3), 190-193.
Sojka, R. E. (1988). Measurement of root porosity (volume of root air space. Environmental and experimental botany, 28(4), 275-280.
Songsri, P., et al. "Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water." Agricultural water management 96.5 (2009): 790-798.
Sonobe, Y., Weller, D., Ikeda, Y., Takano, K., Schabes, M. E., Zeltzer, G., and Best, M. E. (2001). Coupled granular/continuous medium for thermally stable perpendicular magnetic recording. Journal of magnetism and magnetic materials, 235(1-3), 424-428.
Sparks, D. L., Fendorf, S. E., Toner, C. V., and Carski, T. H. (1996). Kinetic methods and measurements. Methods of Soil Analysis Part 3—Chemical Methods, (methodsofsoilan3), 1275-1307.
Starratt, A. N., Kirby, C. W., Pocs, R., and Brandle, J. E. (2002). Rebaudioside F, a diterpene glycoside from Stevia rebaudiana. Phytochemistry, 59(4), 367-370.
Subramanian, S., and Gopalswamy, A. (1991). Effect of moisture, organic matter, phosphate and silicate on availability of silicon and phosphorus in rice soils. Journal of the Indian Society of soil science, 39(1), 99-103.
Sumner, M. E., and Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis part 3—chemical methods, (methodsofsoilan3), 1201-1229.
Tateo, F., Bononi, M., Mariotti, M. G., Cornara, L., and Serrato-Valenti, G. (2001). Trichomes on vegetative and reproductive organs of Stevia rebaudiana (Asteraceae). Structure and secretory products. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 135(1), 25-37.
Tubana, B. T., and Heckman, J. R. (2015). Silicon and Plant Diseases.
Utumi, M. M., Monnerat, P. H., Pereira, P. R. G., Fontes, P. C. R., and Godinho, V. D. P. C. (1999). Macronutrient deficiencies in Stevia: Visual symptoms and effects on growth, chemical composition, and stevioside production. Pesquisa Agropecuária Brasileira, 34(6), 1038-1043.
Woelwer-Rieck, U., Lankes, C., Wawrzun, A., and Wüst, M. (2010). Improved HPLC method for the evaluation of the major steviol glycosides in leaves of Stevia rebaudiana. European Food Research and Technology, 231(4), 581-588.
Yadav, A. K., Singh, S., Dhyani, D., and Ahuja, P. S. (2011). A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Canadian Journal of Plant Science, 91(1), 1-27.
Zhao, D., Hao, Z., Tao, J., and Han, C. (2013). Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.). Scientia horticulturae, 151, 165-172.