استفاده از پیش‌بینی‌های مدل منطقه‌ای WRF برای افزایش دقت برآورد تبخیر- تعرق مرجع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 هیات علمی / دانشگاه تربیت مدرس

3 دانشیار، دانشگاه تربیت مدرس، دانشکده کشاورزی، گروه آبیاری، تخصص: مهندسی آبیاری

4 پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران

چکیده

برآورد با دقت مناسب تبخیر- تعرق مرجـع برای مدیریت و برنامه­ریزی بهیـنه آبیاری ضـروری است. همچنیـن، دستیابـی به پیـش­بینی­های میان­مدت دقیق پارامترهای مؤثر در برآورد تبخیر- تعرق مرجع عنصری کلیدی برای برنامـه­ریزی پویای آبیاری است. این پژوهش با هدف بررسی اثر استفاده از پیش­بینی­های مدل منطقه­ای WRF برای افزایش دقت برآورد تبخیر- تعرق مرجع انجام گردید. از این رو دقت و صحت برونداد و در نتیجه کارآیی پیش­بینی­های 24، 48، 72، 96 و 120 ساعته مدل برای برآورد تبخیر-تعرق مرجع ارزیابی شد. به همین منظور خروجی مدل برای چهار ایستگاه­ قزوین، اسماعیل‌آباد، کرج و هشتگرد در یک دوره سه ماهه (می تا ژوئیه سال 2018 میلادی) استـخراج و با میانگین ده روزه دوره­ی پایه و داده­هـای هواشنـاسی سال 2018 در ایستگاه­های متناظر مقایسه شد. نتایج نشان داد که نرخ تغییرات تبخیر- تعرق مرجع ده روزه (میانگین تمامی ایستگاه­ها) در دوره­ی مورد مطالعه نسبت دوره­ی پایه به ترتیب 9/20- ، 12/8- و 83/7 درصد است. این درصد نرخ تغییرات نشان‌دهنده انحراف مقدار تبخیر- تعرق مرجع در دوره­ی موردمطالعه نسبت به دوره­ی پایه است و بیانگر لزوم استفاده از پیش­بینی­های میان‌مدت در برآورد صحیح تبخیر- تعرق مرجـع است. دامنه­ی تغییرات ضریب تعیین (R2)  برونداد مدل بین 813/0 تا 921/0 به­دست آمد. با توجه به آماره­های مورد بررسی، برونداد مدل برای همه­ی ایستگاه­­ها و طول دوره­های پیش­بینی ­24، 48، 72، 96 و 120 ساعته با دقت زیاد و مناسب ارزیابی شده و استفاده از آن موجب افزایش دقت برآورد تبخیر- تعرق مرجع می­گردد. یافته­ها نشان داد که نه تنها از نظر هماهنگی زمانی، بلکه به لحاظ مقدار نیز همانندی بسیار زیادی بین مقادیر برآورد شده تبخیر- تعرق مرجع حاصل از پس­پردازش آماری برونداد مدل پیش­بینی و تحقیقاتی آب و هوا (WRF) با مقادیر محاسبه شده تبخیر- تعرق مرجع توسط داده­های ایستگاه­های هواشناسی متناظر در نقاط مورد مطالعه وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Forecasts of WRF Regional Model to Improve the Accuracy of Reference Evapotranspiration Estimation

نویسندگان [English]

  • Mohammad Hassan Gharahdaghi 1
  • Mehdi Homaee 2
  • Majid Mirlatifi 3
  • Aliakbar Noroozi 4
1 Department of Irrigation and Drainage/Faculty of Agriculture/Tarbiat Modares University/Tehran/Iran
2 Department of Irrigation and Drainage/Faculty of Agriculture/Tarbiat Modares University/Tehran/Iran
3 Department of Irrigation and Drainage/Faculty of Agriculture/Tarbiat Modares University/Tehran/Iran
4 Watershed Management Research Institute, Tehran, Iran
چکیده [English]

An accurate estimation of reference evapotranspiration is crucial for optimal irrigation scheduling and management. Also, achieving accurate medium range forecasts of effective parameters in estimating reference evapotranspiration is a key component for dynamic irrigation scheduling. This study was aimed to investigate the effect of using Weather Research and Forecasting Model (WRF) regional forecasts to increase the accuracy of reference evapotranspiration estimation. Consequently, the precision and accuracy of the model, and the outcome of forecasts performance at 24, 48, 72, 96, and 120-hours were evaluated to estimate the reference evapotranspiration. For this purpose, the output of the model for four stations including Qazvin, Esmaeil-Abad, Karaj and Hashtgerd were extracted for a period of three months (May-July, 2018) with a 10-days average of the base period. The weather data of 2018 at these stations with the corresponding ones were compared afterwards. The results indicated that the 10-days reference evapotranspiration (average of all stations) in the study period, according to the base period were -20.9, -8.12 and 7.83 percent, respectively. These variations reflects the deviation of the reference evapotranspiration value in the study period in comparison with the base period, indicating the need for using medium-range forecasting in order to correct reference evapotranspiration estimates. The range of determination coefficient (R2) of model output was obtained to be between 0.813 and 0.921. Due to the statistics, the model output for all stations and the lead-time forecasting periods of 24, 48, 72, 96 and 120 hours can be evaluated with high accuracy and its application would enhance the accuracy of reference evapotranspiration estimates. According to the results, not only in terms of time coordination, but also in terms of quantity, there was a high similarity between the estimated values of evapotranspiration derived from its post-statistical output of the (WRF) with calculated values.

کلیدواژه‌ها [English]

  • Reference Evapotranspiration
  • Irrigation scheduling
  • Medium-Range Weather Forecasts
  • WRF Regional Model
Annandale, J. G., Stirzaker, R. J., Singels, A., Van der Laan, M. and Laker, M. (2011). Irrigation scheduling research: South African experiences and future prospects. Water SA. 37 (5):751 - 763.
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage. Paper No. 56. Rome, Italy, 300 p.
Baigorria, G. A., Hansen, J. W., Ward, N., Jones, J. W. and O'Brien, J. J. (2008). Assessing predictability of cotton yields in the southeastern United States based on regional atmospheric circulation and surface temperatures. J. Appl. Meteor. Climatol. 47: 76-91, doi: 10.1175/2007jamc1523.1
Ballesteros, R., Ortega, J. F., Moreno, M. A. (2016). FORETo: new software for reference evapotranspiration forecasting. J. Arid Environ. 124 (1), 128–141.
Bucks, D. A., Allen, R. G., Roth, R. L. and Gardner, B. R. (1988). Short staple cotton under micro and level-basin irrigation methods. Irrig. Sci. 9, 161–176.
Crane, T. A., Roncoli, C., Paz, J., Breuer, N., Broad, K., Ingram, K. T. and Hoogenboom G. (2010). Forecast skill and farmers' skills: Seasonal climate forecasts and agricultural risk management in the southeastern United States. Weather Climate and Society. 2: 44-59, doi: 10.1175/2010wcas1075.1.
Cruz-Blanco, M., Gavilán, P., Santos, C. and Lorite, I. J. (2014). Assessment of reference evapotranspiration using remote sensing and forecasting tools under semi-arid conditions. International Journal of Applied Earth Observation and Geoinformation. 33, 280–289.doi:10.1016/j.jag.2014.06.008 
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, ACM., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., H´olm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Th´epaut, J. N. and Vitart, F. (2011). The ERA-Interim reanalysis, configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597.  https://doi.org/10.1002/qj.828.
Fader, M., Shi, S., von Bloh, W., Bondeau, A. and Cramer, W. (2015). Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. Discuss. 12, 8459–8504.
Hunsaker, D. J., French, A. N., Waller, P. M., Bautista, E., Thorp, K. R., Bronson, K. F. and Andrade-Sanchez, P. (2015). Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA. Agricultural Water Management. 159, 209–224.doi:10.1016/j.agwat.2015.06.016
Kustas, W. P. and Norman, J. M. (1996). Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal. 41:4, 495-516, DOI: 10.1080/02626669609491522.
Moriasi, D. N., Arnold, M. W., Van Liew, R. L., Harmel, R. D. and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3), 885-900.
Leib, B., Sassenrath, G. and Schmidt, A. M. (2012). Irrigation scheduling tools. p. 32-37 In C. Perry, and E. Barnes, (eds.). Cotton Irrigation Management for Humid Regions. Cotton, Incorporated, Cary, NC.
Lin, Y. L., Farley, R. D. and Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor. 22, pp. 1065-1092.
Lorite, I.J., Ramírez-Cuesta, J.M., Cruz-Blanco, M. and Santos, C. (2015). Using weather forecast data for irrigation scheduling under semi-arid conditions. Irrig. Sci. 33 (6), 411–427. http://dx.doi.org/10.1007/s00271-015-0478-0.
Paredes, P., Martins, D., Pereira, L.S., Cadima, J. and Pires, C. (2018). Accuracy of daily estimation of grass reference evapotranspiration using ERAInterim reanalysis products with assessment of alternative bias correction schemes. Agricultural Water Management. 210, 340–353.
Pereira, L. S. (1999). Higher performance through combined improvements in irrigation methods and scheduling: a discussion. Agricultural Water Management.40 (2–3), 153-169.
Raziei, T. and Pereira, S. L. 2013, Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agricultural Water Management. 126, 104-118.
Rinaldi, M. and He, Z. (2014). Decision Support Systems to Manage Irrigation in Agriculture. Advances in Agronomy. Volume 123.
 
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D., Barker, D., Wang, W. and Powers, J. G. (2008). A description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR
Toth, Z., Talagrand, O., Candille, G. and Zhu Y., (2003). Probability and ensemble .Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Jolliffe I. T. and Stephenson, D. B. Wiley. 137–163.
Traore, S., Luo, Y. and Fipps, G. (2017). Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information. Water Resources Management. 31(15), 4891–4908. doi:10.1007/s11269-017-1784-5 
Xie, L., Liu, B., Liu, H. and Guan, C. (2010). NUMERICAL SIMULATION OF TROPICAL CYCLONE INTENSITY USING AN AIR-SEA-WAVE COUPLED PREDICTION SYSTEM. Volume 18: Ocean Science (OS).19–43. doi:10.1142/9789812838148_0002
Xu, J. Z., Peng, S. Z., Yang, S. H., Luo, Y. F. and Wang, Y. J. (2012). Predicting daily reference evapotranspiration in a humid region of China by the locally calibrated Hargreaves–Samani equation using weather forecast data. J Agric Sci Tech. 14:1331–1342.
Yang, Y., Cui, Y., Lu, Y., Lyu, X., Traore, S., Khane, S. and Wang, W. (2016). Short-term forecasting of daily reference evapotranspiration using the penman-Monteith model and public weather forecasts. Agricultural Water Management. 177:329–339.
Young, R.M.B. (2010). Decomposition of the Brier score for weighted forecast‐verification pairs. Quarterly Journal of the Royal Meteorological Society. 136(650): 1364-1370.