توسعه یک مدل جفت شده سطح زمین-آب‌شناسی به‌منظور بهبود شبیه‌سازی جریان رودخانه در حوضه کرخه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل دکتری، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

3 دانشیار، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

در این مطالعه با هدف بهبود شبیه­سازی جریان رودخانه، تاثیر جفت­سازی طرحواره برهمکنش جو-سطح خشکی ALSISبا مدل آب‌شناسی HBVدر کل حوضه کرخه و زیرحوضه­های آنبدون در نظر گرفتن حوضه کرخه جنوبیبررسی شد.قبل از جفت­سازی، مقایسه بین رطوبت خاک مدل HBV و طرحواره ALSIS صورت گرفت و صحت نتایج رطوبت خاک هر دو مدل با داده­های مشاهداتی بررسیشد. برای مقایسه نتایج مدل و داده‌های مشاهده‌ای از سنجه‌های آماری NSE، RMSE، BIAS و RSR استفاده شد. مقایسه نتایج رطوبت خاک شبیه‌سازی شده به‌وسیلهALSISو HBV با داده­های مشاهداتی نشان داد در همه زیرحوضه­ها همخوانی بهتری بین رطوبت خاک ALSIS و داده­های مشاهده‌ای (در مقایسه با HBV) وجود دارد. طرحواره ALSIS در فصول مرطوب و مقادیر زیاد رطوبت و مدل HBV در فصول خشک و مقادیر کم رطوبت شبیه‌سازی بهتر نشان داده­اند. مدل جفت­شده ALSIS-HBVدر همه زیرحوضه­های کرخه و کل حوضه عملکرد بهتری نسبت به HBV، به­ویژه در جریان­های بیشینه، داشته است. بهترین نتایج شبیه‌سازی جریان در زیرحوضه قره­سو مقادیرNSE 76/0 تا 88/0 ،RMSE 7/7 تا 5/4 میلی­متر در ماه و RSR 49/0 تا 34/0به­دست آمد. بیشترین مقدار کاهش خطای BIAS مربوط به زیرحوضه کشکان است که از 24/0 به 03/0 رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a Coupled Hydrologic-Land Surface Model to Improve River Flow Simulation in the Karkheh Basin

نویسندگان [English]

  • Maryam Shafiei 1
  • Javad Bazrafshan 2
  • Parviz Irannejad 3
1 PhD, Department of Irrigation and Reclamation, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
2 Associate Professor, Department of Irrigation and Reclamation, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
3 Associate Professor, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

In this study, with the aim of improving river flow simulation, the effect of coupling between Atmosphere-Land Surface Interaction Scheme (ALSIS) and HBV hydrological model in Karkheh Basin and its sub basins without considering South Karkheh basin was investigated. Before coupling, comparison between soil moisture of HBV model and ALSIS scheme was performed and the accuracy of soil moisture results of both models was evaluated with observational data.Some metrics such as NSE, RMSE, BIAS and RSR were used to compare the simulated and observed data. Comparison of simulated soil moisture results by ALSIS and HBV with observational data showed that in all sub-basins there was better agreement between ALSIS soil moisture and observational data (compared to HBV). The ALSIS scheme showed better simulation in wet seasons and high humidity and HBV model in dry seasons and low humidity. The ALSIS-HBV coupled model performed better than HBV in all sub-basins and the entire Karkheh Basin, especially at high flow. The best results were obtained for the Ghare Sou subbasin with NSE=0.76 – 0.88, RMSE=7.7 – 4.5 mm per month, and RSR=0.49 - 0.34. The greatest reduction in BIAS erroroccurred in the Kashkan subbasin, which decreased from 0.24 to 0.03.

کلیدواژه‌ها [English]

  • ALSIS Scheme
  • HBV model
  • River flow
  • Karkheh watershed
Abbott, M., Bathurst, J., Cunge, J., O'connell, P. and Rasmussen, J. (1986). An introduction to the European Hydrological System—Systeme Hydrologique Europeen,’’SHE”, 2: Structure of a physically-based, distributed modelling system. Journal of hydrology, 87(1), 61-77.
Akhtar, M., Ahmad, N. and Booij, M. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of hydrology, 355(1), 148-163.
Bergstrom, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments. SMHI, Report RHO 7, Norrköping, 134 pp.
Bergstrom, S. (1995). The HBV model. In: Singh, V.P. (Ed.) Computer Models of Watershed Hydrology. Water Resources Publications.
Beven, K.J. and Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43-69. DOI: 10.1080/02626667909491834.
Bouilloud, L. and Coauthors. (2010). Coupling the ISBA land surface model and the TOPMODEL hydrological model for Mediterranean flash-flood forecasting: description, calibration, and validation. Journal of Hydrometeorology, 11(2), 315-333.
Devia, G.K., Ganasri, B. and Dwarakish, G. (2015). A Review on Hydrological Models. Aquatic Procedia, 4, 1001-1007.
Driessen, T.L.A., Hurkmans, R.T.W.L., Terink, W., Hazenberg, P., Torfs, P.J.J.F. and Uijlenhoet, R. (2010). The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrology and Earth System Sciences, 14, 651-665.
Hansen, M., DeFries, R., Townshend, J.R. and Sohlberg, R. (1981). UMD global land cover classification, 8 kilometers, 1.0. Department of Geography, University of Maryland, College Park, Maryland, 1994: 1998.
Hejabi, S. (2017). Development of a Water-Energy Balance Model in the Framework of the Palmer Drought Severity Index. Ph. D.dissertation,University of Tehran. (In Farsi)
Herman, J., Reed, P. and Wagener, T. (2013). Time‐varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resources Research, 49(3), 1400-1414.
Hohenrainer, J. (2008). Propagation of drought through the hydrological cycle in two different climatic regions. Masterdissertation, Albert-Ludwigs-Universität, Freiburg, Germany.
Irannejad, P. and Shao, Y. (1998). Description and validation of the atmosphere–land–surface interaction scheme (ALSIS) with HAPEX and Cabauw data. Global and Planetary Change, 19(1), 87-114.
Khodamorad Poor, M. and Irannejad, P. (2009). Simulation of discharge of the Karoon river by the OSU land-surface scheme in uncoupled and coupled form with the SIMTOP model. Iranian Journal of Jerophysics. 3 (2), 91- 107.(In Farsi)
Leung, K.Y. (2006). An examination on the effectiveness of extended Kalman filter in land surface data assimilation. City University of Hong Kong.
Lindström, G., Johansson, B., Persson, M., Gardelin, M. and Bergström, S. (1997). Development and test of the distributed HBV-96 hydrological model. Journal of hydrology, 201(1), 272-288.
Livneh, B., Restrepo, P.J. and Lettenmaier, D.P. (2011). Development of a unified land model for prediction of surface hydrology and land-atmosphere interactions. Journal of Hydrometeorology, 12(6), 1299-1320.
Min, L., Zhao-Hui, L., Chuan-Guo, Y. and Quan-Xi, S. (2014). Application of a coupled land surface-hydrological model to flood simulation in the Huaihe River Basin of China. Atmospheric and Oceanic Science Letters, 7(6), 493-498.
Munro, R.K., Lyons, W.F., Shao, Y., Wood, M.S., Hood, L.M., Leslie, L.M. (1998). Modelling land surface–atmosphere interactions over the Australian continent with an emphasis on the role of soil moisture. Environmental modelling & software, 13(3), 333-339.
National Research Council, Committee on Hydrologic Science(2004). Groundwater fluxes across interfaces, National Academy Press, 85 pp.
Parviz, L., Kholghi, M., Irannejad, P., Araghinejad, Sh. and Valizadeh, Kh. (2011). An Assessment of the Integrated Variable Infiltration Capacity and RoutingModel in the Sefidroad River Basin. Journal of Water and Soil, 25 (3), 570-582. (In Farsi)
Penman, H. (1961). Weather, Plant and Soil Factors in HYDROLOGY. Weather, 16(7), 207-219.
Rakovec, O., Van Loon, A. F., Horacek, S., Kašparek, L., Van Lanen, H.A. J., Novicky, O. (2009). Drought analysis for the Upper Metuje and Upper Sazava catchments (Czech Republic) using the hydrological model HBV. WATCH Technical Report 19, accessed: 10-2013. URL: http://www.eu-watch.org/publications/technical-reports.
Robinson, M. and Ward, R. (2000). Principles of Hydrology. Berkshire England: McGraw-Hill Publishing Company. Ward and Robinson.
Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D. and Toll, D. (2004). The Global Land Data Assimilation System, Bulletin of the American Meteorological Society, 85(3), 381-394.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8): 1015.
Shafiei, M., Bazrafshan, J. and Irannejad, P. (2019). Comparison of four Sensitivity Analysis Methods of HBV Conceptual Model Parameters for Karkheh Basin and its Sub-basins. Journal of Earth and Space Physics, 45(1), 89-105.(In Farsi)
Shen, H., Yuan, F., Ren, L., Ma, M., Kong, H., Tong, R. (2015). Regional drought assessment using a distributed hydrological model coupled with Standardized Runoff Index. Proceedings of the International Association of Hydrological Sciences, 368, 397-402.
Shi, Y. (2012). Development of a land surface hydrologic modeling and data assimilation system for the study of subsurface-land surface interaction. Ph. D. dissertation, The Pennsylvania State University.
SHMI, (2003). Homepage of the Original HBV-Model. URL: http://www.smhi.se/foretag/m/hbv_demo/html/welcome.html.
Te Linde, A., Aerts, J., Hurkmans, R. and Eberle, M. (2008). Comparing model performance of two rainfall-runoff models in the Rhine basin using different atmospheric forcing data sets. Hydrology and Earth System Sciences, 12(3), 943-957.
Tian, W., Li, X., Wang, X.S. and Hu, B. (2012). Coupling a groundwater model with a land surface model to improve water and energy cycle simulation. Hydrology and Earth System Sciences Discussions, 9(1), 1163-1205.
Van Loon, A.F. (2013). On the propagation of drought: how climate and catchment characteristics influence hydrological drought development and recovery. Ph. D.dissertation, Wageningen University.
Van Loon, A.F., Van Lanen, H.A.J., Hisdal, H., Tallaksen, L.M., Fendeková, M., Oosterwijk, J., Horvat, O. and Machlica, A. (2010). Understanding hydrological winter drought in Europe. Global Change: Facing Risks and Threats to Water Resources. edited by: Servat, E., Demuth, S., Dezetter, A., Daniell, T., Ferrari, E., Ijjaali, M., Jabrane, R., Van Lanen, H., and Huang Y., IAHS Publication, 340, 189-197.
Van Pelt, S., Kabat, P., Ter Maat, H., Van den Hurk, B. and Weerts, A. (2009). Discharge simulations performed with a hydrological model using bias corrected regional climate model input. Hydrology and Earth System Sciences, 13(12), 2387-2397.
Veenstra, D. (2009). Exploring drought in the Upper-Guadiana Basin, Spain. Master dissertation, Wageningen University.
Wieder, W., Boehnert, J., Bonan, G. and Langseth, M. (2014). Regridded Harmonized World Soil Database v1. 2, Data set. Available on-line [http://daac. ornl. gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.
Xu, P. and Shao, Y. (2002). A salt-transport model within a land-surface scheme for studies of salinisation in irrigated areas. Environmental Modelling & Software, 17(1), 39-49.
Yang, C., Shao, Y. and Lin, Z. (2015). Development of a two-way coupled land surface-hydrology model: Method and application. Proceedings of International Symposium on Climate Change and Water (ISCCCW). Nanjing, China, 309-317.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R.R. and Myneni, R.B. (2013). Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 5(2), 927-948.