Ballio, F., Teruzzi, A., & Radice, A. (2009). Constriction effects in clear-water scour at abutments. Journal of Hydraulic Engineering, 135(2), 140-145.
Bozkus, Z., & Yildiz, O. (2004). Effects of inclination of bridge piers on scouring depth. Journal of Hydraulic Engineering, 130(8), 827-832.
Breusers, H. N. C., & Raudkivi, A. J. (1991). Scouring. Hydraulic Structures Design Manual2. Balkerna, Rotterdam, The Netherlands: IAHR.
Cardoso, A. H., & Fael, C. M. (2009). Protecting vertical-wall abutments with riprap mattresses. Journal of Hydraulic Engineering, 135(6), 457-465.
Chiew, Y. M. (1992). Scour protection at bridge piers. Journal of Hydraulic Engineering, 118(9), 1260-1269.
Dargahi, B. (1990). Controlling mechanism of local scouring. Journal of Hydraulic Engineering, 116(10), 1197-1214.
Fathi, A., & Zomorodian, S. M. A. (2018). Effect of Submerged Vanes on Scour Around a Bridge Abutment. KSCE Journal of Civil Engineering, 22(7), 2281-2289.
Heidarpour, M., Afzalimehr, H., & Izadinia, E. (2010). Reduction of local scour around bridge pier groups using collars. International Journal of Sediment Research, 25(4), 411-422.
Hossainreza, A.A. (2017). Investigation the Joined Effect of Riprap and Six Legged Elements (SLC) Installation on Scour Depth Mitigation at Vertical Wall Bridge Abutments. Journal of Irrigation Science and Engineering. Ahvaz: Iran.
Johnson, P. A., Hey, R. D., Tessier, M., & Rosgen, D. L. (2001). Use of vanes for control of scour at vertical wall abutments. Journal of Hydraulic Engineering, 127(9), 772-778.
Khademi, Kh. & Shafai Bajestan, M. (2015). Annalysing the Effect of Number, Location and Angle of Submerged Plates on Abutment. Iranian Water Studies, 8(15) 145-153.
Khazimenejad, H., Ghomeishi, M., & Shafai Bajestan, M. (2014). Comparison of Symmetrical and Unsymmetrical Rectangular Collars on Reduction of Local Scour at Bridge Abutment. Journal of Irrigation Science and Engineering, 37(2), 1-12.
Kirkgöz, M. S., & Ardiçlioğlu, M. (1997). Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering, 123(12), 1099-1105.
Korkut, R., Martinez, E. J., Morales, R., Ettema, R., & Barkdoll, B. (2007). Geobag performance as scour countermeasure for bridge abutments. Journal of Hydraulic Engineering, 133(4), 431-439.
Kumar, V., Raju, K. G. R., & Vittal, N. (1999). Reduction of local scour around bridge piers using slots and collars. Journal of Hydraulic Engineering, 125(12), 1302-1305.
Li, H., Barkdoll, B. D., Kuhnle, R., & Alonso, C. (2006). Parallel walls as an abutment scour countermeasure. Journal of Hydraulic Engineering, 132(5), 510-520.
Mashahir, M. B., Zarrati, A. R., & Mokallaf, E. (2009). Application of riprap and collar to prevent scouring around rectangular bridge piers. Journal of Hydraulic Engineering, 136(3), 183-187.
Melville, B. W. (1992). Local scour at bridge abutments. Journal of Hydraulic Engineering, 118(4), 615-631.
Melville, B. W., & Sutherland, A. J. (1988). Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114(10), 1210-1226.
Melville, B., Van Ballegooy, S., Coleman, S., & Barkdoll, B. (2006). Countermeasure toe protection at spill-through abutments. Journal of Hydraulic Engineering, 132(3), 235-245.
Melville, B., Van Ballegooy, S., Coleman, S., & Barkdoll, B. (2006). Scour countermeasures for wing-wall abutments. Journal of Hydraulic Engineering, 132(6), 563-574.
Mohammadpour, R., Ghani, AAB. and Azamathulla, HM. (2013). Estimation of dimension and time variation of local scour at short abutment. International Journal of River Basin Management 11(1): 121-135.
Naeemi Nobandegani, H., & Heidarpour, M. (2014). Studying the Effect of Roughening Elements on Reduction of Scour Around Abutments (pp.1-8). 13th Iranian Hydraulics conference, Tabriz University, Iran.
Pagliara, S., Hassanbandi, L.S., & Kurdistani, S.M. (2015). Log-Vane Scour in clear water Condition. Journal of River Research and Applications, 31(9), 1176–1182.
Radice, A., & Davari, V. (2014). Roughening elements as abutment scour countermeasures. Journal of Hydraulic Engineering, 140(8), 1-7.
Rajaratnam, N., & Nwachukwu, B. A. (1983). Erosion near groyne-like structures. Journal of Hydraulic Research, 21(4), 277-287.
Raudkivi, A. J., & Ettema, R. (1983). Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338-350.
Raudkivi, A. J. (1998). Loose boundary hydraulics, The Netherlands: A. A. Balkema.
Richardson, E. V., Harrison, L. J., Richardson, J. R., & Davies, S. R. (1993). Evaluating scour at bridges. Washington, DC., USA: Federal Highway Administration. US Department of Transportation.
Sui, J., Afzalimehr, H., Samani, A. K., & Maherani, M. (2010). Clear-water scour around semi-elliptical abutments with armored beds. International Journal of Sediment Research, 25(3), 233-245.
Vittal, N., Kothyari, U. C., & Haghighat, M. (1994). Clear-water scour around bridge pier group. Journal of Hydraulic Engineering, 120(11), 1309-1318.
Xiong, X., Melville, B.W., Feriedrich, H., (2013). Effect of contraction length on abutment scour. Proceedings of the International IAHR World Congress.
Zarrati, A. R., Gholami, H., & Mashahir, M. B. (2004). Application of collar to control scouring around rectangular bridge piers. Journal of Hydraulic Research, 42(1), 97-103.
Zarrati, A. R., Chamani, M. R., Shafaie, A., & Latifi, M. (2010). Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap. International Journal of Sediment Research, 25(3), 313-322.
Zolghadr. M., Shafai Bejestan. M., & Fathi, A. (2016). Effect of Density and Depth of Six-Legged Elements Placement on Rectangular Abutment Scour Depth. Water and Soil Sience, 26(4.1), 119-135.
Zolghadr. M. & Shafai Bejestan. M. (2018). Effect of Six-Leg Elements installation arrangement on bed topography around Wing-Wall Abutments. Journal of Water Resources Engineering, 11(36), 47-58.