برآورد پارامترهای مدل ذخیره موقت برای شبیه‌سازی انتقال آلودگی در رودخانه‌های بستر سنگریزه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری،ساری، ایران.

3 دانشکده فنی و مهندسی، دانشگاه مراغه،مراغه، ایران،

4 دانشکده فنی و مهندسی،دانشگاه مراغه،مراغه، ایران.

چکیده

این تحقیق برای آزمون نحوه تبادل جرم مابین مجرای اصلی و مناطق راکد جریان در آبراهه‌های روباز انجام گرفت. معادلات دیفرانسیلی ذخیره-موقت به‌عنوان معادلات اساسی حاکم بر انتقال و پراکندگی آلودگی انتخاب شده و آزمایش‌های این پژوهش در یک فلوم آزمایشگاهی به طول، عرض و ارتفاع (12، 2/1 و 8/0) متر و بر روی یک بستر سنگریزه­ای انجام شد. شیب­های 001/0، 004/0 و 007/0 و دبی­های 5/7، 5/11 و 5/15 لیتربرثانیه برای انجام آزمایش‌ها انتخاب گردید. برای تخمین پارامترهای چهارگانه این معادلات، از مدل عددی OTIS-P استفاده شده و سپس منحنی­های رخنه مشاهداتی در نقاط مختلف اندازه­گیری باز تولید شدند. انطباق منحنی­های رخنه پیش‌بینی‌شده و اندازه­گیری شده توسط شاخص‌های جذر میانگین مربع خطاها، ضریب کارایی نش – ساتکلیف و متوسط خطای مطلق بررسی شد. حاصل تحقیق بیانگر دقت بالای مدل عددی OTIS-P با مقادیر RMSE بین 031/0 تا 118/0 و شاخص نش- ساتکلیف (Nash-Sutcliffe) بین 48/0 تا 97/0 در تخمین پارامترهای مدل ذخیره موقت می­باشد. در نهایت اعتبار پارامترهای برآورد شده مدل ذخیره موقت با استفاده از عدد بدون بعد دام-کلور تائید شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Transient Storage Parameters for Simulation of Pollution Transport in the Gravel Bed Rivers

نویسندگان [English]

  • yaghoub azhdan 1
  • Alireza Emadi 2
  • Jafar Chabokpour 3
  • Rasoul Daneshfaraz 4
1 Department of Water Engineering,Sari Agricultural Sciences and Natural Resources University,Sari, Iran.
2 Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University,Sari, Iran.
3 Faculty of Engineering, Maragheh University,Maragheh, Iran,
4 Faculty of Engineering, Maragheh University, Maragheh, Iran.
چکیده [English]

This research was conducted to test how to exchange mass between the main channel and the stagnant areas of the stream. The transient storage differential equations were selected as the governing equations for simulation of advection- diffusion of pollution in river flow. The experiments were conducted in a gravel bed flume, with length, width and depth of 12, 1.2 and 0.8m, respectively. Three longitudinal slopes of 0.001, 0.004 and 0.007 and three discharges of 7.5, 11.5 and 15.5 (l/s) were selected for the experiments. The numerical model of OTIS-P was used to estimate the four parameters of the transient storage model. Then the observed breakthrough curves were regenerated at the same locations of measured points. Goodness of fit was estimated with the root mean square error (RMSE), Nash and Sutcliffe model efficiency coefficient (NS) and the mean absolute error (MAE). The comparisons revealed that the OTIS-P model (with RMSE between 0.031- 0.118 and Nash- Sutcliffe between 0.48-0.9) could be employed successfully for estimation transient storage parameters. Finally, the reliability of the estimated parameters of the transient storage model was confirmed by the non-dimensional Dam-kohler number.

کلیدواژه‌ها [English]

  • Tracer Experiment
  • Mass Exchange
  • breakthrough curve
  • OTIS-P
Barati Moghaddam, M., Mazaheri, M. and Samani, J. M. V. (2017). Numerical solution to advection-dispersion equation with transient storage zones, considering unsteady flow in irregular cross section rivers. Irrigation Sciences and Engineering. pp. 99-117. (In Farsi).
Bencala, K.E. (1984). Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Water Resources Research, 20, 1804–1814.
Bencala, K.E. and Walters, R.A. (1983). Simulation of solute transport in a mountain pool-and riffle stream: a transient storage model. Water Resource Research, 19(3), 718–724.
Busolin, A.B. (2010). Transport of solutes in streams with transient storage and hyporheic exchange. Ph.D. thesis, University of Padova. 
Chanson, H. (2004). Environmental hydraulics of open channel flow. First Edition. Elsevier Butterworth- Heinemann Linacre House. Jordan Hill. Oxford.
Elder, J.W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5, 544-560.
Fernald, A.G., Wigington, P. and Landers, D.H. (2001). Transient storage and hyporheic flow along the Willamette River, Oregon: field measurements and model estimates. Water Resources Research, 37(6), 1681-1694.
Harvey, J.W., Wagner, B.J. and Benkala, K.E. (1996). Evaluating the reliability of the stream traces approach to characterize stream subsurface water exchange. Water Resources Research, 32(8), 2441-2451.
Hays, J.R., Krenkel, P.A. and Schnelle, K.B. (1966). Mass transport mechanisms in open- channel flow. Sanitary and Resources Engineering. Tech.Rep.8, Vanderbit University, Nashville, Tennessee.
Jin, L., Siegel, D.I., Lautz, L.K. and Otz, M.H. (2009). Transient storage and downstream solute transport in nested stream reaches affected by beaver dams. Hydrological Process, 23: 2438-2449.
Masoud Rana, S.M., Scott, D.T. and Hester, E.T. (2017). Effects of in-stream structures and channel flow rate variation on transient storage. Journal of Hydrology, 548, 157-169.
Meddah, S., Saidane, A., Hadjel, M. and Hireche, O. (2015). Pollutant dispersion modeling in natural streams using the transmission line matrix method. Water Journal, 7(9), 4932-4950.
Nordin, C.F. and Troutman, B.M. (1980). Longitudinal dispersion in rivers: The persistence of skewness in observed data. Water resources Research, 16(1), 123-128.
Parsaie, A., Ahmadi, M.M. and Qaderi, K. (2014). Numerical model of contaminant transport in rivers with dead zone using fractional calculas. International Bulletin of Water Resources & Development. Vol (II). No. (02)- PP.56-65. (In Farsi(.
Ramaswami, A., Milford, J.B. and Small, M.J. (2005). Integrated environmental modeling: pollutant transport, fate and risk in the environmental, J. Wiley.
Sabol, G.V. and Nordin, C.F. (1978). Dispersion in rivers as related to storage zones. J. Hydraul. Div. ASCE, 104, 695- 708.
Seo, I.W. and Cheong, T.S. (2001).  Moment-Based calculation of parameters for the storage zone model for river dispersion. Journal of Hydraulic Engineering, 127(6), 453-465.
Taylor, G.I. (1954). The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. London Ser. A 223, 446–468.
Thackston, E.L. and Krenkel, A.M. (1967). Longitudinal mixing in natural streams. Journal of the Sanitary Engineering Division. 93, 67-90.
Thackston, E.L. and Schnelle, K.B.J. (1970). Predicting effects of dead zones on stream mixing. Journal of the Sanitary Engineering Division, 96(2), 319-331.
Tsai, Y.H. and Holly, R.R. (1979). Temporal and spatial moment for longitudinal mixing in prismatic channels with storage in separation zones. Hydraulic Engineering.
Valentine, E.M., and Wood, I.R. (1977). Longitudinal dispersion with dead zones. J. Hydraul. Div. ASCE, 103,975-990.
Valentine, E.M., and Wood, I.R. (1979a). Experiment in longitudinal dispersion with dead zones. J. Hydraul. Div. ASCE, 105,999-1016.
Valentine, E.M., and Wood, I.R. (1979b). Dispersion in rough rectangular channels. J. Hydraul. Div. ASCE, 105, 1537-1553.
Ward, A.S., Keller C.A., Mason S.J.K., Wagener, T., Mcintyre, N., McGlynn, B., Runkel, R.L. and Payn, R.A. (2016). A software tool to assess uncertainty in transient-storage model parameters using Mont Carlo simulations. Freshwater Science 36(1), 195-217.
Wagner, B.J. and Harvey, J.W. (1997). Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies, Water Resources Research, 33, 1731-1741.
Wlostoski, A.N., Gooseff,  M.N. and Wagner, T. (2013). Influence of constant rate versus slug injection experiment type on parameter identifiability in a 1-D transient storage model for stream solute transport. Water Resources Research, 49(2), 1184-1188.
Zaramella, M., Marion, A., Lewandowski, j. and Nutzmann G. (2016). Assessment of transient storage exchange and advection-dispersion mechanisms from concentration signatures along breakthrough curves. Journal of Hydrology, 538, pp. 794-801.