ارزیابی وضعیت مادة آلی خاک با استفاده از تکنیک رگرسیون کریجینگ و تصاویر ماهوارة لندست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 دانشجوی سابق کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

3 دانشیار، گروه جنگلداری، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

مادة آلی یکی از فاکتورهای مهم کیفی خاک است که تأثیر زیادی بر ویژگی­های فیزیکی، شیمیایی و بیولوژیکی خاک دارد. برآورد دقیق تغییرات مکانی مادة آلی خاک بویژه در کشاورزی دقیق الزامی است. هدف از این پژوهش برآورد تغییرات مکانی مادة آلی خاک و وضعیت آن با استفاده از تکنیک رگرسیون کریجینگ در اراضی دشت قروه در استان کردستان می­باشد. بدین منظور تعداد 150 نمونة خاک به روش سیستماتیک با فواصل 2×2 کیلومتر از عمق 0 تا 15 سانتیمتری جمع­آوری شد. توزیع اندازة ذرات و مقدار مادة آلی خاک­ها در آزمایشگاه اندازه­گیری شدند. با استفاده از رگرسیون خطی چند متغیرة گام به گام رابطة بین مقدار مادة آلی و داده­های بافت خاک (درصد شن، سیلت و رس) و شاخص­های پوشش گیاهی، بدست آمده از تصاویر ماهوارة لندست 8، بدست آمد. به کمک مدل بدست آمده نقشة اولیة مادة آلی خاک تهیه شد. سپس مقدار باقیمانده­های مدل رگرسیونی با روش کریجینگ معمولی درون­یابی شد که پس از ادغام آن با نقشة اولیه، نقشة نهایی مادة آلی خاک بدست آمد. نقشة وضعیت مادة آلی خاک از همپوشانی نقشة مادة آلی خاک با نقشة بافت خاک در چهار کلاس خیلی کم، کم، متوسط و زیاد بدست آمد. نتایج حاصل از رگرسیون خطی چند متغیره نشان داد که متغیرهای درصد رس و شاخص پوشش گیاهی اصلاح شده (SAVI) اثر معنی­داری بر روی مقدار مادة آلی خاک داشتند (05/0> P). بر اساس نتایج حاصل از ارزیابی متقاطع روش رگرسیون کریجینگ توانست 84 درصد از تغییرات مکانی مادة آلی خاک را توصیف کند. نقشة وضعیت مادة آلی خاک نشان داد که بیش از 96 درصد از خاک­های منطقه از نظر مادة آلی در وضعیت کم قرار دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of soil organic matter status using regression kriging technique and Landsat images

نویسندگان [English]

  • Mohammad Ali Mahmoodi 1
  • Molood Mirzaie 2
  • Mahtab Pir Bavaghar 3
1 Assistant Professor, Department of Soil Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Graduated M.Sc. Student, Department of Soil Science, University of Kurdistan, Sanandaj, Iran
3 Associated Professor, Department of Forestry, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Soil organic matter (SOM) is an important soil quality factor that affects physical, chemical and biological properties of the soil. Accurate estimation of SOM spatial variabilities provides critical information especially in precision agriculture. The objective of this study was to estimate SOM spatial variabilities and to assess its status using regression kriging (RK) in Ghorveh plain in Kurdistan province (Iran). Therefore,  150 soil samples from a depth of 0-15 cm were taken systematically in a grid spaced 2 Km × 2 Km. Particle size distribution and SOM content of the soil samples were measured in the laboratory. Stepwise multiple linear regressions (MLR) was used to estimate SOM variabilities based on the soil texture data (percentages of sand, silt and clay) and vegetation indices obtained from Landsat Enhanced Thematic Mapper (ETM) imagery. The MLR model was used to provide an initial map of SOM content. Furthermore, the residuals of MLR model were interpolated using ordinary kriging (OK) and they were combined with the initial map of SOM to produce the final map of RK SOM. The SOM status map was derived from overlaying of soil texture and SOM maps in four different levels (very low, low, medium and high). The results of MLR indicated that both clay content and soil adjusted vegetation index (SAVI) variables have a significant effect on SOM content (p <0.05). The cross-validation results indicated that the RK method was able to explain about 84% of the spatial variabilities of SOM. The SOM status map indicated that more than 96% of the soil in the proposed region is in a low condition in terms of organic matter.

کلیدواژه‌ها [English]

  • Spatial Variability
  • soil adjusted vegetation index
  • Remote Sensing
Anderson, G. L., Hanson, J. D. and R. H. Haas. (1993). Evaluating landsat thematic mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sensing of the Environment, 45(2),165-175.
Ben-Dor, E., Goldshleger, N., Eshel, M., Mirablis, V. and Bason, U. (2008). Combined active and passive remote sensing methods for assessing soil salinity. In Metternicht G and Zinck A (Ed.),Remote Sensing of Soil Salinization: Impact on Land Management, (pp. 235–258). Boca Raton, FL, USA: CRC Press
Burgess, T. M. and Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil properties: the semivariogram and punctual kriging. Soil Science, 31, 315–331.
Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment. New York: Oxford university press.
Chen, F., Kissel, D. E., West, L. T., Adkins, W. (2000). Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Science Society of America Journal, 64, 746–753.
Eldeiry, A. and Garcia, L. A. (2009). Comparison of regression kriging and cokriging techniques to estimate soil salinity using Landsat images. Hydrology Days, 27:38.
Gee, G. W. and Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of Soil Analysis. Part 1. (2nd ed.). (pp. 383-409). Madison, Wisconsin: American Society of Agronomy and Soil Science Society of America.
Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 259-309.
Istok, J. D., Smyth, J. D., Flint, A. L. (1993). Multivariate geostatistical analysis of groundwater contaminant: a case history. Groundwater, 31, 63–74.
Lal, R. (2007). Farming carbon. Soil and Tillage Research, 96, 1–5.
Liao, K.., Xu, S., Wu, J. and Zhu, Q. (2013). Spatial estimation of surface soil texture using remote sensing data. Soil Science and Plant Nutrition, 59(4), 488-500.
Mahmoodi, Sh. and Hakimian, M. (1998). Fundamentals of soil science. Tehran: Tehran university press. (In Farsi).
Marchetti, A., Piccini, C., Francaviglia, R. and Mabit, L. (2012). Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in central Italy. Pedosphere, 22(2), 230–242.
McBratney, A. B. and Webster, R. (1986). Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Journal of Soil Science, 37, 617–639.
Mirzaie, M. (2015). Prediction of soil organic matter based on soil characteristics, topography and remote sensing data using artificial neural networks. M. Sc. thesis. University of Kurdistan, Sanandaj.
Moore, A. D., McLaughlin, R. A., Mitasova, H. and Line, D. E. (2007). Calibrating WEPP model parameters for erosion prediction on construction sites. Transactions of the ASABE, 50(2):507-516.
Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I. A discussion of principles. Journal of Hydrology,10(3), 282-290.
Odeh, I. O. A., McBratney, A. B. and Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: Heterotopic cokriging and regression kriging. Geoderma, 67(3), 215–226.
Quinton, J. N. (1997). Reducing predictive uncertainty in model simulations: A comparison of two methods using the European Soil Erosion Model (EUROSEM). Catena, 30(2), 101-117.
Shouse, P. J., Gerik, T. J., Russell, W. B. and Cassel, D. K. (1990). Spatial distribution of soil particle size and aggregate stability index in a clay soil. Soil Science, 149, 351–360.
Societ`a Italiana dei Laboratori Pubblici di Agrochimica (SILPA). (1999). From Soil Analysis to the Fertilization Advice (in Italian). ASSAM, Agenzia Servizi Settoren Agroalimentare delle Marche, Regione Marche, Jesi, Italy.
Triantafilis, J., Odeh, I. O. A. and McBratney, A. B. (2001). Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Science Society of America Journal, 65, 869–878.
Vauclin, M., Vieira, S. R., Vachaud, G. and Nielsen, D. R. (1983). The use of cokriging with limited field observations. Soil Science Society of America Journal, 47, 175–184.
Walkley, A., and Black, I. A. (1934). An examination of the Degtjareffmethod for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
Wu, C., Wu, J., Luo, Y., Zhang, L. and DeGloria, S. D. (2009). Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73, 1202–1208.
Yadav, V. and Malanson, G. (2007). Progress in soil organic matter research: litter decomposition, modeling, monitoring and sequestration. Progress in Physical Geography, 31:131–154
Yates, S. R. and Warrick, A. W. (1987). Estimating soil water content using cokriging. Soil Science Society of America Journal, 51, 23–30.