توسعه یک مدل برنامه‌ریزی غیرخطی برای تعیین الگوی کشت بهینه در شرایط کم‌آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس پژوهشی، گروه مهندسی آبیاری و زهکشی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

2 استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی و پژوهشکده زعفران دانشگاه تربت‌حیدریه، تربت حیدریه، ایران

چکیده

بهبود کارایی مصرف آب و عملکرد شبکه­های آبیاری در شرایط کم­آبیاری، مستلزم تعیین سطوح مناسب کم­آبیاری است. این تحقیق با هدف توسعه یک مدل برنامه­ریزی غیرخطی برای تعیین الگوی کشت بهینه در شرایط کم­آبیاری انجام شد. یک مدل غیرخطی با تابع هدف شاخص بهره­وری آب اقتصادی (سود خالص به میزان آب مصرفی) با یک مدل رشد گیاهی ترکیب و توسعه‌یافته و با استفاده از داده­ها و اطلاعات شبکه آبیاری شهید چمران اهواز، مدل توسعه‌یافته اجرا و مورد ارزیابی قرار گرفت. نتایج نشان داد که بیشترین سطح زیرکشت در تمامی سناریوهای کم­آبیاری مربوط به محصول گندم می­باشد و برای سناریوهای 10، 20 و 30 درصد کم­آبیاری به­ترتیب مقادیر 674، 949 و 1362 هکتار از اراضی شبکه را شامل می­گردد. افزایش سطح زیرکشت شبکه، در سناریوی 30 درصد کم­آبیاری نسبت به سناریوی آبیاری کامل 92 درصد برآورد گردید. کمترین سطح زیرکشت نیز مربوط به محصول آفتابگردان با مساحت 189 هکتار (در سناریوی 10 درصد کم­آبیاری) است. آنالیز نتایج بیانگر آن است که در سناریوی 10 درصد کم ­آبیاری، مقدار شاخص بهره­وری آب اقتصادی شبکه با مدیریت الگوی کشت می­تواند تا 19 درصد افزایش نسبت به آبیاری کامل را داشته باشد. درحالی‌که در سناریو 20 درصد و 30 درصد کم­آبیاری، با اجرای الگوی کشت بهینه مربوطه، مقادیر این شاخص به ترتیب معادل 21 و 23 درصد افزایش برآورد می­گردد. همچنین بررسی­ها حاکی از آن دارد که ترکیب متفاوت از سناریوهای کم‌آبیاری برای محصولات الگوی کشت می­تواند نتایج متفاوت­تری را حاصل نماید. بر این اساس در الگوی کشتی که در آن برای محصولات لوبیا و باقلا 10 درصد، برای محصولات آفتابگردان و سیب‌زمینی 20 درصد و برای محصول گندم 30 درصد کم­آبیاری اعمال گردد، شاخص بهره­وری آب اقتصادی شبکه می­تواند به حداکثر میزان 15250 ریال بر مترمکعب افزایش یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a nonlinear programming model optimal cropping pattern based on deficit irrigation scenarios

نویسندگان [English]

  • MOHAMMADHADI NAZARIFAR 1
  • Amir Salari 2
  • Rezvaneh Momeni 1
1 Research Expert, Department of irrigation and drainage, Pardis of Aboreihan, Tehran University, Tehran, Iran
2 Assistant Professor, Department of Plant Production, Faculty of Agricultural and Natural Resources and Saffron Institute University of Torbat Heydarieh, Torbat Heydarieh, Iran
چکیده [English]

Obtaining appropriate levels of deficit irrigation is necessary to improve water productivity and performance of irrigation networks in deficit irrigation conditions. This study was carried out to develop a nonlinear programming model for determination of an optimal cropping pattern in deficit irrigation conditions. A non-linear model with the objective function of economical water productivity index (Net profit to water consumption ratio) was combined with a crop growth model and it was evaluated using the data of Shahid Chamran irrigation network. Results showed that the highest cultivation area in all scenarios is related to wheat crop. The wheat cultivation area for the 10, 20 and 30 percent deficit irrigation were estimated to be 674, 949 and 1362 ha, respectively.   The increased cultivation area in 30 percent deficit irrigation scenario was estimated 92 percent as compared to the full irrigation scenario.  The lowest cultivation area in the network was for sunflower with an area of 189 hectares (in 30 percent scenario). The results of this study for the 10 percent scenario indicated that the overall economical water productivity of the network can be increased up to 19% by managing cropping pattern as compared to the full irrigation scenario. While in the 20 and 30 percent deficit irrigation scenarios, the economical water productivity index values increased 21 and 23 percent respectively by implementing optimal cropping pattern. Also studies show that the different combinations of deficit irrigation scenarios for the crops   could present different results. Accordingly, the overall water productivity of the network can be increased to a maximum of 15250 Rls/m3, if 10 percent for broad bean and bean, 20 percent for sunflower and potatoes and 30 percent deficit irrigation for wheat are considered.

کلیدواژه‌ها [English]

  • Cropping pattern
  • Deficit irrigation
  • optimization
  • Water economic productivity
Amir, I., and Fisher, F.M. (1999). Analyzing agricultural demand for water with an optimizing model. Agricultural Systems, 61(1), 45-56.
Anonymous (2010). Deputy of Planning and Economic Affairs, Ministry of Jihad-e-Agriculture. Journal of No. 89.01. The cost of agricultural production of 2008-2009 crop year. Volume II. (In Farsi). 
Ashoubgar-Toosi, Sh., Alizadeh, A., and Taghizadeh-kakhki, H. (2004). Optimization of Crop Pattern in Drought Condition. Journal of Drought and Agricultural Drought, 10, 1-18 (In Farsi).
Belhouchette, H., Donatelli, M., Braudeau, E., and Wery, J. (2001). Test of the cropping systems model CropSyst in Tunisian conditions. Proceedings Second International Symposium Modelling Cropping Systems, 16–18 July, Florence, Italy. Pp. 47–48
Benli, B., and Kodal, S. (2003). A non-linear model for farm optimization with adequate and limited water supplies application to the south-east Anatolian project (GAP) region. Agricultural Water Management, 62(3), 187-203.
Berenguer, M. J., and Faci, J. M. (2001). Sorghum (Sorghum bicolor L. Moench) yield compensation processes under different plant densities and variable water supply. European Journal of Agronomy, 15, 43-55.
Bekele, S., and Tilahun, K. (2007). Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agricultural water management, 89, 148 – 152.
Buxton, D. R. (1996). Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Animal Feed Science and Technology, 59, 37-49.
Carvallo, H.O., Holzapfel, E.A., Lopez, M.A., and Marino, M.A. (1998). Irrigated cropping optimization. Journal of Irrigation and Drainage Engineering, 124(2), 67-72.
Cummins, D. G. (1981). Yield and quality changes with maturity of silage- type sorghum fodder. Agronomy Journal, 73, 988-990.
Darabi, A., and Ghanawati-Moghaddam, A. (2005). Effect of plant density and harvest history on the performance of potato cultivars in winter cultivars. Khuzestan Agricultural Research Center. (In Farsi).
De-Juan, J.A., Tarjuelo, J.M., Valiente, M., and Garcia, P. (1996). Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity. I. Development of a decision model. Agricultural Water Management, 31(1-2), 115-143.
Denmead, O. T. and Shaw, R. H. (1960). The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agronomy journal, 52, 272 - 274.
Diaz, G.E., and Brown, T.C. (1996). Aquarius: an object-oriented model for the efficient allocation of water in river basins. Technical report no. 7. Colorado State University, pp. 32-48.
Doorenbos, J., and Kassam, A.H. (1979). Yield response to water. Irrigation and Drainage Paper. No. 33, FAO, Rome, 193 pp.
English, M.J. (1992). Deficit irrigation. I. Analytical framework. Journal of  irrigation and drainage engineerning, 116 (3), 399-412.
FAO. (2002). Production Yearbook. Vol. 56, pp. 83
Gelize, A., Persolo, D., Guevarna, E., Avila, L.G., and Casped, L. M. (1995). Performance of inbred lines of maize under conditions of water stress. Memoria de I a III Reunion Latino Americana YXVI Reunion dela zona Andinia de Mvestigadores en maize. Cochama, Santa Gruz Bolivia. Tomo. I 67-177.
Ghahraman, B., and Sepaskhah, A .R. (2004). Linear and non-linearo ptimization modelsf or allocation of a limited water supply. Journal of Irrigation and Drainage Engineering, 53(1), 39-54.
Heidari, N., Eslami, A., Ghadami-Firoozabadi, A., Kanooni, A., Asadi, M.A., and Khajeh-Abdollahi, M.H. (2006). Research report on determining water use efficiency of crops in Khuzestan. Agricultural engineering research institute. (In Farsi).
Kajbaf, A. (2005). The research report on the effects of planting dates and seed rates on wheat yield of variety Cr''S''/stk''S''L92-6ap-Lap-oap. Khuzestan Agricultural Research Center. (In Farsi).
Kanber, R., Kirda, C. (1994). Evaluation of deficit irrigation programmes for cotton, maize, wheat and soybean. Proc Int Conf of Land and Water Resources Management in the Mediterranean Region. Istituto Agronomico Mediterraneo Bari-Italy, 4-8 Sept., 5, 117-133.
Kang, Sh., Shi, W., and Zhang, J. (2000). An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 67, 207-214.
Kiniry, J.R., Jones, C.A., O'Toole, J.C., Blanchet, R., Cabelguenne, M., and Spanel, D.A. (1989). Radiation-use efficiency in biomass accumulation prior to grain filling for five grain crop species. Field Crops Research, 20(1), 51–64.
Kipkorir, E.C., Sahli, A., and Raes, D. (2002). MIOS: a decision tool for determination of optimal irrigated cropping pattern of a multicrop system under water scarcity constraints. Irrigation and Drainage, 51(1), 155-166.
Kuo, M-H., Vom-Baur, E., Struhl, K., and Allis, C.D. (2000) Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell, 6(6), 1309–1320. 
Leenhardt, D., Trouvat, J.L., Gonzales, G., Perarnaud, V., Prats, S., and Bergez, J.E. (2004). Estimation irrigation demand for water management on a regional scale. II.Validation of ADEAUMIS, Agricultural Water Management, 68, 233-250.
Li, Q.Sh., Willardson, L.S., Deng, W., Li., X.J., and Liu, Ch.J. (2005). Crop water deficit estimation and irrigation schedualingin westernJ ilin province, N ortheastC hina. Agricultural Water Management, 71(1), 47-60.
Loomis, R., and Connors, D. (1992). Crop Ecology: Productivity and Management in Agricultural Systems, Cambridge University Press, Cambridge, UK. Pp. 514-520.
Mainuddin, M., Das-Gupta, A., and Raj-Onta, P. (1997). Optimal crop planning model an existing groundwater irrigation project in Thailand. Agricultural Water Management, 33(1), 43-62.
Momeni, R., Behbahani, M., and Nazarifar, M.H. (2011). Assessing the scenarios for increasing the productivity of rainfed wheat water in the Karkheh area by using managerial analyzes of CropSyst. Journal of Irrigation and Water Management of Pardis Abourihan University of Tehran, 1(1), 29-40. (In Farsi)
Nazarifar, M.H., and Momeni, R. (2011). Validation and evaluation of plant growth model of CropSyst in determination of proper cropping pattern under deficit irrigation conditions. Case study of Shahid Chamran irrigation and drainage network. Journal of Agricultural Science and Technology, 15(56), 49-61. (In Farsi)
NeSmith, D.S., and Ritchie, J.T. (1992). Short- and long-term response of corn to a preanthesis soil water deficit. Agronomy  journal, 84, 107-113.
Nozari, H., Mohseni, V. (2015). Applying system dynamics approach for simulation and optimization of the cropping pattern inEsfahan right side Abshar irrigation and drainage network. Iranian journal of soil and water research, 46(3), 465-474. (In Farsi).
Otegui, M.E., and Andrade, F.H. (2000). New relationships between light interception, ear growth and kernel set in maize. In: Physiology and modeling kernel set in maize (Westgate M.E., Boote K., eds). pp. 89-102.
Pannkuk, C.D., Stöckle, C.O., and Papendick, R.I. (1998). Validation of CropSyst for winter and spring wheat under different tillage and residue management practices in a wheat-fallow region. Agricultural Systems, 57(2), 121–133.
Pendletion, B.B., Teetce, G.L. and Peterson, G.C. (1994). Phenology of sorghum flowering. Crop Sciences, 34, 1263-1266.
Raju, KS., and Nagesh Kumar, D. (1999). Multicriteria decision making in irrigation development strategies. Journal of Agricultural Systems, 62(2), 117–129.
Reca, J., Roldan, J., Alcaide, M., Lopez, R., and Camacho, E. (2001). Optimisation model for water allocation in deficite irrigation systems. I. Description of the model. Agricultural Water Management, 48(2), 103-116.
Ritchie, S.W., Hanway, J.J., and Benson, G.O. (1992). How a corn plant develops. Special Report No. 48. Iowa State University, p. 21.
Singh, D.K., Jaiswal, C.S., Reddy, K.S., Singh, R.M. and Bhandarkar, D.M. (2001). Optimal cropping pattern in a canal command area. Agricultural Water Management, 50(1), 1-8.
Shaw, R.H. (1977). Climatic requirement. In: Corn and corn improvement (Sprague G.F., ed). Agron Monogr 18. ASA,CSSA, and SSSA, Madison, WI.
Statistical Center of Iran, Organization for Management and Planning of the Country. (2007). Selling prices and costs of agricultural services in rural areas of the country, Selling prices and costs of agricultural services in rural areas of the country. (In Farsi).
Stewart, J.I., and Hagan, R.M. (1973). Function to predict effects of crop water deficits. Journal of Irrigation and Drainage Engineering, 99(IR. 4), 421-439.
Stöckle, C.O., Williams, J.R., Rosenberg, N.J., and Jones, C.A. (1992). A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I. modification of the EPIC model for climate change analysis. Agricultural Systems, 38(3), 225–238.
 
Stöckle, C.O., and Nelson, R.L. (1999). Cropsyst User's manual, Biological Systems Engineering Dept., Washington State University, Pullman, WA, USA.
Stöckle, C.O., Donatelli, M., and Nelson, R. (2003). CropSyst, a cropping systems simulation model, European Journal of Agronomy, 18(3-4), 289-307.
Tanner, C.B. and Sinclair, T.R. (1983). Efficient water use in crop production: research or re-search. In: H.M. Taylor, W.R. Jordan and T.R. Sinclair, Editors, Limitations to efficient water use in crop production, Americansociety agronomy, Madison, WI.
Yaron, D., and Bresler, E. (1983). Economic analysis of on-farm irrigation using response functions of crops. In: Hillel, D.(Ed.), Advances in Irrigation, Vol. 2, academic Press, New york, pp. 223-255.
Young, J. (1996). Water economics. In: Mays, L.W. (Ed.), Water Resources Handbook. MacGraw-Hill, New York.