تأثیر سیاست بهره برداری، سطوح اعتمادپذیری و آستانه کمبود نیاز کشاورزی بر ظرفیت بهینه مخزن سد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه منابع آب، دانشکده عمران، آب و محیط زیست، پردیس فنی عباسپور، دانشگاه شهید بهشتی، تهران، ایران

2 گروه منابع آب، دانشکده عمران آب و محیط زیست، پردیس فنی عباسپور، دانشگاه شهید بهشتی، تهران، ایران

چکیده

ظرفیت بهینه مخزن یک سد متأثر از دو فرض مهم است که در مرحله طراحی مدنظر قرار می‌گیرند. مورد اول سیاست بهره‌برداری منتخب است که به معنی نحوه رهاسازی جریان در زمان بهره‌برداری است. سیاست‌های متعارف بهره‌برداری از مخزن در مطالعات عمدتاً شامل سیاست بهره‌برداری استاندارد،S-type ،SQ-type و روش‌های برگرفته از این روش‌ها مانند GSQ-type و یا GSQD-type هستند. مورد دوم سطوح مفروض اعتمادپذیری و حد آستانه کمبود مجاز در تأمین نیازها هستند. در این مطالعه، تأثیر توأم سیاست بهره‌برداری منتخب، حدود اعتمادپذیری و آستانه کمبود بر روی ظرفیت بهینه مخزن سد ماربره در استان لرستان مورد بررسی قرار گرفته است. بدین منظور تعیین ظرفیت بهینه مخزن در چهار حالت، Free Policy، SOP، S-type و SQ-type با لحاظ توأم سطوح مختلف اعتمادپذیری و آستانه کمبود انجام گرفته است. نتایج به‌دست‌آمده نشان می‌دهد که ظرفیت بهینه مخزن سد به‌شدت متأثر از حدود اعتمادپذیری، آستانه کمبود و سیاست بهره‌برداری منتخب است. به‌نحوی‌که در مطالعه حاضر تغییر در اعتمادپذیری از 50 تا 100 درصد کمینه ظرفیت مخزن را برای حالت‌های مختلف سیاست بهره‌برداری و آستانه کمبود موردقبول مختلف، از 2/5 میلیون مترمکعب تا 3/248 میلیون مترمکعب تغییر می‌دهد. تأثیر عدم قطعیت پارامتر احتمالاتی جریان ورودی به مخزن سد نیز در مطالعه حاضر به روش ضمنی (استفاده از سری‌های آماری) لحاظ شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of the Operation Policy, Reliability Level and Allowed Deficit Threshold for Water Supply in the Optimum Reservoir Capacity

نویسندگان [English]

  • hossein sheibani 1
  • mojtaba shourian 2
1 department of civil, water and environment engineering, abbaspour college of engineering, shahid beheshti university, tehran, iran
2 department of water and environment engineering, abbaspour college of engineering, shahid beheshti, university, tehran. iran
چکیده [English]

The optimum capacity of a reservoir is affected by two important assumptions considered in the design phase. The first one is the selected operation policy which means releasing flow at the operation time. The common reservoir operation policies in researches, mainly include the Standard Operation Policy, S-Type, SQ-Type and the techniques based on them such as GSQ-Type, GSQD-Type. The second effective parameters are assumed reliability levels and the allowed deficit threshold for water supply. In this study, the simultaneous effect of the selected operation policy, the reliability range, and deficit threshold on the optimum reservoir capacity of Marbareh in Lorestan province was investigated. For this purpose, determination of the optimum reservoir capacity in 4 operation modes which was predetermined as operation without any preset policy (Free Policy), SOP and S-Type and SQ-Type linear operation strategies considering concurrent reliability levels and deficit thresholds was performed. The results show that the optimum reservoir capacity was severely influenced by reliability levels, deficit thresholds, and selected operation policy. So that, in this study the reliability change from 50% to 100% changes the minimum reservoir capacity for different modes of operation policies and the accepted deficit thresholds from 5.2 MCM to 248.3 MCM. The effect of the uncertainty of the stochastic parameter of the inflow into the reservoir is considered by implicit method (using statistical series).

کلیدواژه‌ها [English]

  • Optimization
  • Reservoir Capacity
  • Implicit Method
  • Standard Operation Policy
Alizadeh, H., & Mousavi, S. J. (2013). Stochastic order-based optimal design of a surface reservoir–irrigation district system. Journal of Hydroinformatics, 15(2), 591-606.
Alizadeh, H. (2013). Optimization of Irrigation Planning under Uncertainty (Doctoral dissertation, Amirkabir University of Technology (Tehran Polytechnic)).
Cai, X., McKinney, D. C. (1999). A modeling framework for sustainable water resources management (Doctoral dissertation, Center for Research in Water Resources, University of Texas at Austin).
Cai, X., McKinney, D. C., Lasdon, L. S. (2003). Integrated hydrologic-agronomic-economic model for river basin management. Journal of water resources planning and management, 129(1), 4-17.Colorni, A., Fronza, G. (1976). Reservoir management via reliability programing, Water Resources Research, 12(1), February.
Dudley, N. J., Musgrave, W. F., Howell D. T. (1972). Irrigation planning 3. The best size of irrigation area for a reservoir, Water Resources Research, 8(1), February.
Dudley, N. J., Burt, O. R. (1973). Stochastic reservoir management and system design for irrigation, Water Resources Research, 9(3), June.
Datta, B., Burges, S. (1984). Short-term, single, multiple purpose reservoir operation: The importance of loss functions and forecast errors, Journal of Water Resources Research, 20(9), Pages 1167-1176,  September.
Houck, M. H., Datta, B. (1981). Performance of a stochastic optimization model for reservoir design and management With Explicit Reliability Criteria, Journal of Water Resources Research, 17(4), Pages 827-832,  August.
Hyde, K. M., Maier H. R., Colby, C. B. (2004). Reliability-based approach to multicriteria decision analysis for water resources, Journal of Water Resources Planning and Manageent, ASCE, (2004), 429-438, November/December.
Jain, S. K., Bhunya, P. K. (2010). Reliability, resilience, and vulnerability of a multipurpose storage reservoir, Hydrological Sciences Journal, 53(2), April.
Jery, R. Stedinger. (1984). The performance of LDR models for preliminary design and reservoir operation, Water Resources Research, 20(2), Pages 215-224, February.
Karamouz, M., Houck, M. H. (1982). Annual and monthly operation rules generated by deterministic optimization, Journal of Water Resources Research, 18(5), Pages 1337-1344,  October.
Loucks, D. P., Dorfman, P. J. (1975). An evaluation of some linear decision rules in the chance-constrained model for reservoir planning and operation, Journal of Water Resources Research, 11(6), December.
Loucks, D. P., van Beek, E., Stedinger, J. R., Villars, J. P.M. D. (2005). Water Resources Systems Planning and Management An Introduction to Methods, Models, and Applications, Published in 2005 by the United Nations Educational, Scientific and Cultural Organization.
 Luthra, S. S., Arora, S. R. (1976). Optimal design of single reservoir system using and release policy, Journal of Water Resources Research, 12(4), August.
Marques, G. F., Lund, J. R., Howitt, R. E. (2005). Modeling irrigated agricultural production and water use decisions under water supply uncertainty, Water Resources Research, Vol. 4.
 Moradi-jalal, M., Bozorg Haddad, O., Karnney, B. W., Marino, M. A. (2007). Reservoir operation in assigning optimal multi-crop irrigation areas, agricultural water management, Vol. 90, 149-159.
Mousavi, S. J., Alizadeh, H., Ponnambalam, K. (2014). Storage-yield analysis of surface water reservoir: the role of reliability constraints and operating policies, Stoch Environment Research and Risk Assessment, June.
Neelakantan, T.R., and Pundrikanthan, N.V. (1999). Hedging rule optimization for water supply Reservoirs System, Water Resources Research, 13(6), 409-426.
Simonovic, S. P., Marino, M. A. (1980). Reliability programing in reservoir management 1. Single multipurpose reservoir, Water Resources Research, 16(5), Pages 844-848, October.
Strycharczyk, J. B., Stedinger, J. R. (1987). Evaluation of a reliability programming reservoir model, Water Resources Research, 23(2), Pages 225-229, February.
Tung, Y. K. T., Yen, B. C., Melching, C. S. (2005). Hydrosystems Engineering Reliability Assessment and Risk Analysis, The McGraw-Hill Companies, Inc.
Vedula, S., Mujumdar, P. P. (1992). Optimal reservoir operation for irrigation of multiple crops, Water Resources Research, 28(1), PAGES 1-9.
Wurbs, R. A. (2005). Modeling river/reservoir system management, water allocation, and supply reliability, Journal of Hydrology,300, 100-113.