آنالیز حساسیت مولفه‌های هیدروگراف جریان به تغییر در پارامترهای روش زمان – مساحت کلارک در آبخیز محمدآباد استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مرتع و آبخیزداری، دانشکده علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

2 دانشجوی کارشناسی‌ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

3 دانشیار گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی

4 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشگاه تربیت مدرس

چکیده

کاربرد مدل هیدروگراف واحد لحظه‌ای کلارک به جهت نیاز به داده‌های سهل‌الوصول در آبخیزهای فاقد ایستگاه هیدرومتری از اهمیت خاصی برخوردار است. هدف تحقیق حاضر شبیه‌سازی هیدروگراف واحد جریان آبخیز محمدآباد استان گلستان با استفاده از روش زمان - مساحت و انجام آنالیز حساسیت (نسبی و مطلق) نتایج شبیه‌سازی در آبخیز مورد مطالعه است. برای تعیین تغییرات سطح حوزه نسبت به زمان تمرکز (هیستوگرام زمان-مساحت) از روش دیاگرام بی‌بعد (روش لاورنسن) استفاده شده و سپس هیدروگراف واحد لحظه‌ای با مدل کلارک برای آبخیز مذکور شبیه‌سازی شد. آنالیز حساسیت مدل کلارک با تغییر دو پارامتر زمان تمرکز و ضریب ذخیره صورت گرفته و سپس حساسیت نسبی و مطلق مدل در برآورد مولفه‌های هیدروگراف واحد جریان تعیین گردید. هم‌چنین هیدروگراف واحد مشاهداتی سیل در آبخیز با استفاده از منحنی S محاسبه و دقت مدل مذکور در برآورد هیدروگراف واحد آبخیز با معیار نش-ساتکلیف مورد ارزیابی قرار گرفت. براساس نتایج، دقت مدل مذکور در شبیه‌سازی هیدروگراف واحد جریان 71 درصد است. نتایج آنالیز حساسیت مدل نشان داد که حساسیت نسبی مدل در برآورد دبی اوج هیدروگراف واحد جریان به پارامتر ضریب ذخیره برابر 66/0- می‌باشد. هم‌چنین حساسیت مطلق مدل به پارامتر زمان تمرکز برابر 76/2- می‌باشد. در مجموع می‌توان گفت که پارامتر حساس در برآورد دقیق زمان تا اوج، متغیر زمان تمرکز محاسباتی جریان می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity analysis of the flow hydrograph components due to changes in Clark's time-area model in Mohammad-Abad watershed, Gloestan Province

نویسندگان [English]

  • Raoof Mostafazadeh 1
  • Shahnaz Mirzaei 2
  • Abazar Esmali 3
  • Mohsen Zabihi 4
1 Professor (Assistant) Department of Rangeland and Watershed Management, Faculty of Agricultural Sciences and Natural Resources University of Mohaghegh Ardabili
2 M.Sc. student of Watershed Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili
3 Associate Professor, Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili
4 Ph.D Student of Watershed ‎Management Science and Engineering, Tarbiat Modares University
چکیده [English]

The Clark Instantaneous Unit Hydrograph is getting popular because of its easy accessible parameters and application to ungauged catchments. This study focuses on simulating the unit hydrograph of Mohammad-Abad watershed, Golestan Province and analysis of relative and absolute sensitivity analysis of the Clark time-area model. The time-area histogram of the study area were identified using dimensionless Laurenson’s method. The instantaneous unit hydrograph of study area was also calculated by the Clark model and then converted to direct runoff unit hydrograph. The sensitivity analysis of the Clark model has been conducted by changing the input model parameters (time of concentration and storage coefficient) to obtain the relative and absolute sensitivity of the model to estimate the unit hydrograph components. The observed index unit hydrograph were derived using S-curve method and the efficiency of Clark IUH model in predicting hydrologic watershed response hydrograph was evaluated by Nash-Sutcliffe efficiency criterion. The results showed that the model efficiency was 71% in predicting the response of unit hydrograph. The model sensitivity analysis indicated that the relative sensitivity of the Clark model to storage coefficient parameter was -0.66 in estimation of peak discharge of unit hydrograph. Also the absolute sensitivity of the model was -2.76 with respect to changes in concentration time. It can be concluded that the time of concentration was the sensitive parameter in accurate estimation of time to peak of unit hydrograph.

کلیدواژه‌ها [English]

  • Unit Hydrograph
  • Relative sensitivity
  • Absolute sensitivity
  • Time-area histogram
  • Mohammad-Abad watershed
Adib, A., Salarijazi, M., Mahmoodian Shooshtari, M., and Mohammad Akhondali, A. (2011). Comparison between characteristics of geomorphoclimatic instantaneous unit hydrograph be produced by GCIUH based Clark model and Clark IUH model. Marine Science and Technology, 19(2), 201-209.
Ahmad, M.M., Ghumman, A.R., and Ahmad, S. (2009). Estimation of Clark’s instantaneous unit hydrograph parameters and development of direct surface runoff hydrograph. Journal of Water Resources Management, DOI 10.1007/s11269-008-9388-8.
Al-Smadi, M. (1998). Incorporating spatial and temporal variation of watershed response in a GIS-based hydrologic model, M.Sc Thesis in Biological Systems Engineering, Virginia, Blacksburg, 148p.
Asadi, H., Moradi, H., and Sadeghi, S.H. (2016). The effect of storage coefficient in flood routing, a case study of kasilian watershed, mazandaran province. International Bulletin of Water Resources & Development, IV(01), 23-33. (In Farsi)
Asadi, H., Moradi, H.R., Telvari, A.R., and Sadeghi, S.H.R. (2010). Evaluating methods of storage coefficient of Clark's Instantaneous Unit Hydrograph in simulation of flood unit hydrograph.  Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 14(53), 41-50. (In Farsi)
Bahremand, A., and De Smedt, F. (2007). Distributed hydrological modeling and sensitivity analysis in torysa watershed, slovakia. water resources management. Springer Science, Doi: 10.1007/s11269-007-9168-x.
Bardossy, A. (2007). Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, 11, 703-710.
Clark, C.O. (1945). Storage and the unit hydrograph. Transactions of the American Society of Civil Engineers, 110, 1419–1446.
Crobeddu, E., Bennis, S., and Rhouzlane, S. (2007). Improved rational hydrograph method. Journal of Hydrology, 338, 63–72.
Gan, Y., Duan, Q., Gong, W., Tong, Ch., Sun, Y., Chu, W., Ye, A., Miao, C., and Di, Zh. (2014). A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environmental Modelling & Software, 51, 269-285.
Gharun, M., Azmi, M., and Adams, M.A. (2015). Short-term forecasting of water yield from forested catchments after bushfire: A case study from Southeast Australia. Water, 7, 599-614.
Ghumman, A.R., Khaled, Kh., Hashmi, H.N., and Ahmad, M.M. (2014). Comparison of clark and geographical instantaneous unit hydrograph models for arid and semi arid regions. International Journal of Water Resources and Arid Environments, 3(1), 43-50
Giudice, G.D., and Padulano, R. (2016). Sensitivity analysis and calibration of a rainfall-runoff model with the combined use of EPA-SWMM and genetic algorithm. Acta Geophysica, 64(5), 1755-1778.
Jain, V., and Sinha, R. (2003). Derivation of unit hydrograph from GIUH analysis for a Himalayan river. Journal of Water Resources Management, 17, 355–375.
Kilgore, J. L. (1997). Development and evaluation of a GIS-based spatially distributed unit hydrograph model. M.Sc Thesis in Biological Systems Engineering Dept, Virginia Tech, Blacksburg.
Kumar, R., Chatterjee, C., Lohani, A.K., and Kumar, S. (2004).GIUH based Clark and Nash models for runoff estimation for an ungauged basin and their uncertainty analysis. International Journal of River Basin Management, 2(4), 281-290.
Kumar, R., Chatterjee, C., Lohani, A.K., Kumar, S., and Singh, R.D. (2002). Sensitivity analysis of the GIUH based Clark model for a catchment. Water Resources Management, 16, 263–278.
McCuen, R.H. (1973). The role of sensitivity analysis in hydrologic modeling. Journal of Hydrology, 18, 37-53.
Mostafazadeh, R., Bahremand, A., and Sadaddin, A. (2009). Simulating the direct runoff hydrograph using Clark instantaneous unit hydrograph (Case study: Jafar-Abad Watershed, Golestan Province). Water and Soil Conservation, 16(3), 105-122. (In Farsi)
Nash, J. E., and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290.
Noorbakhsh, M.E., Rahnama, M.B., and Montazeri, S. (2005). Estimation of IUH with Clark's method using GIS techniques. Journal of Applied Sciences, 5(3), 455-458.
Perumal, M., Moramarco, T., and Melone, F. (2007). A caution about the multilinear discrete lag-cascade model for flood routing. Journal of Hydrology, 338, 308–314.
Poor Hajizadeh, A., Mohseni saravi, M., Varvani, J., and Vafakhah, M. (2009). Relationship between NASH Instantace Unit Hydrograph parameters and Flow physiographical characteristics in some selection watersheds iran. Watershed Management Researches (Pajouhesh & Sazandegi), 83, 21-29. (In Farsi)
Sadeghi, S.H.R., and Dehghani, M. (2006). Efficacy of estimation methods for storage coefficient of instantaneous unit hydrograph in flood unit hydrograph regeneration. Agricultural Sciences and Natural Resources, 13(3), 152-160. (In Farsi)
Sadeghi, S.H.R., Mostafazadeh, R., and Sadoddin,A. (2015). Changeability of simulated hydrograph from a steep watershed resulted from applying Clark’s IUH and different time–area histograms. Environmental Earth Sciences, 74, 3629-3643.
Safavi, H.R. (2009). Engineering Hydrology. Arkan Danesh Publishing Company, Isfahan, Iran. 620p. (In Farsi)
Salas, J.D. (2006). Notes on Unit Hydrographs. Colorado State University. Department of Civil and Environmental Engineering. CE 322. 25p.
Singh, V. P. (1988). Hydrologic Systems: Rainfall-Runoff Modeling. vol. 1. Englewood Cliffs, N.J: Prentice Hall.
Walega, A. (2014). The importance of the objective functions and flexibility on calibration of parameters of Clark instantaneous unit hydrograph. Geomatics, Landmanagement and Landscape, 2, 75-85.
Wanielista, M.P. (1997). Hydrology Water Quantity and Water Quality Control. University of Central Florida. 565p.
Willmot, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194.
Yannopoulos, S., Christidis, Ch., Loukas, A., and Giannopoulou, I. (2013). A sensitivity analysis on the parameters of clark instantaneous unit hydrograph. 8th International Conference of EWRA "Water Resources Management in an Interdisciplinary and Changing Context". January, 1055-1065.
Zegre, N., Skaugset, A.E., Som, N.A., and McDonnell, J.J. (2010). In lieu of the paired catchment approach: Hydrologic model change detection at the catchment scale. Water Resources Research, 46, W11544, 1-20.
Zoppou, Ch. (1999). Review of storm water models. CSIRO Land and Water Canberra Technical report, 52/99.