تخمین غلظت کلروفیل آ در دریاچه سد اکباتان با استفاده از تصاویر سنجش از دور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد/ دانشگاه بوعلی سینا

2 استاد/ دانشگاه تهران

3 همدان/ دانشگاه بوعلی سینا

4 گروه مهندسی بهداشت دانشگاه علوم پزشکی ایلام

چکیده

پایش کیفی منابع آب و به ویژه مخازن سدها بسیار حیاتی می­باشد اما نمونه­برداری از آب دریاچه پشت سدها بسیار وقت­گیر، هزینه­بر و همراه با مخاطرات متعدد است. تصاویر ماهواره­ای و هوایی از آب­های سطحی را می­توان به عنوان ابزاری مفید جهت پایش پارامترهای کیفیت آب در پیکره­های آبی استفاده نمود. در این مطالعه امکان شناسایی و پایش غلظت کلروفیلa در مخزن سد اکباتان با استفاده از تصویر لندست 7 بررسی شد. به این منظور تبدیلات مختلفی روی بازتابش باندها اعمال شد و رابطه بین غلظت کلروفیل با بازتابش بررسی و استخراج شد. سپس بهترین مدل برای تخمین غلظت کلروفیلa انتخاب شد. نتایج مطالعه نشان داد رابطه به­دست آمده براساس نسبت باندها دقیق­ترین تخمین را از بین مدل­های به دست آمده ارائه می­دهد. مقدار R2Adj برای این مدل برابر 91/0 و مقدار SE نیز معادل 04/0 به دست آمد. نتایج نشان می­دهد که می­توان با استفاده از تصاویر لندست 7 غلظت کلروفیلa را با دقت قابل قبولی تخمین زد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Chlorophyll-a Concentration Using Remote Sensing Images

نویسندگان [English]

  • Abdollah Taheri 1
  • Mohammad Reza Serajian 2
  • Maryam Ghashghaie 3
  • Keywan Weysi 4
1 Bu Ali Sina University
2 University of Tehran
3 Bu Ali Sina University
4 Ilam University of Medical Sciences
چکیده [English]

Monitoring the quality of water resources and reservoirs is very important however water sampling is a very time consuming, costly and sometimes dangerous task. Satellite and aerial images from surface water could be applied to monitor water quality parameters of different water bodies effectively. In this research the possibility of estimating and monitoring chl-a concentration in Ekbatan reservoir is evaluated using Landsat 7 images. Different conversions were applied to bands reflectance and the relation between chl-a concentration with reflectance were examined and derived. Then the best model for estimating the concentration of chl-a was selected. The results of study showed that the equation based on the band ratio have the most precise estimate between all models. The value of R2Adj and SE were 0.91 and 0.04 respectively. The results show that using Landsat 7 images the concentration of chl-a could be estimated accurately.

کلیدواژه‌ها [English]

  • Ekbatan Dam
  • Eutrophication
  • Landsat 7
  • Water quality
Alparslan, E., Aydoner, C., Tufekci, V. and Tufekci, H. (2007). Water quality assessment at Ömerli Dam using remote sensing techniques. Environ Monit Assess., 135:391-398. Doi: 10.1007/s10661-007-9658-6.
Brezonik, P., Menken, K. D. and Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake and Reservoir Management, 21: 373–382.
Carder, K.L., Chen, F.R., Cannizzaro, J.P., Campbell, J.W., Mitchell, B.G. (2004) Performance of the MODIS semi-analytical ocean coloralgorithm for chlorophyll-a. Advances in Space Research, 33:1152–1159.
Carvalho, G. de A., Minnett, P., Baringer, W., Banzon, V. (2007) Detection of Florida “red tides” from SeaWiFS and MODIS imagery. Anais XIII Simposio Brasileiro De Sensoriamento Remoto, Florianopolis, Brasil, 21-26 Abril 2007, INPE, 4581-4588.
Chen, L., Tan, C. H., Kao, S. J. and Wang, T. S. (2008). Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery. Water Res., 42: 296–306.
Dall'Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., and Holz, J. C. (2005). Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 96(2): 176–187.
Darecki, M., and Stramski, D. (2004) An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3): 326–350.
Gitelson, A. A., Gurlin, D., Moses, W. J., and Yacobi, Y.Z. (2011a). Remote Estimation of Chlorophyll-a Concentration in Inland, Estuarine, and Coastal Waters. Chapter 18 in Advances in Environmental Remote Sensing, Sensors: Algorithms, and applications, CRC Press, Taylor and Francis Group, 449-478.
Gurlin, D., Gitelson, A. A. and Moses, W. J. (2011) Remote estimation of chl-a concentration in turbid productive waters — Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115(12): 3479–3490.
Han, L. and Jordan, K. (2005). Estimating and mapping chlorophyll a concentration in Pensacola Bay, Florida using Landsat ETM data. International Journal of Remote Sensing, 26: 5245–5254.
Honeywill, C., Paterson, D. M., and Hegerthey, S. E. (2002) Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. European Journal of Phycology, 37(4): 485–492.
Isenstein E. M., Trescott, A. and Park, M. H. (2014) Multispectral Remote Sensing of Harmful Algal Blooms in Lake Champlain, USA. Water Environ. Res., 86, 2271. (Volume 86, Number 12). doi:10.2175/106143014X13975035526149.
Jarvie, H. P. C. N, P.J.A. Withers. (2006) Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?. Science of the Total Environment 360: 246– 253.
Jin, X. C. Xu, Q. J. and Huang, C. Z. (2005) Current status and future tendency oflake eutrophication in China. Sci China Ser C, 48: 948–954.
Kuo, J.T., M.H.Hsieh, W.S. Lung and N. She. (2007) Using artificial neural network for reservoir eutrophication prediction. Ecological modeling. 200. 171–177.
Moses, W. J., Gitelson, A. A., Berdnikov, S. and Povazhnyy, V. (2009a) Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data Successes and challenges. Environmental Research Letters, 4 045005(8pp), doi:10.1088/1748-9326 /4/ 4/ 045005.
Moses,W., Gitelson, A., Berdnikov, S. and Povazhnyy, V. (2009b) Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS — The Azov Sea case study. IEEE Geoscience and Remote Sensing Letters, 4(6): 845–849.
Narteh, V. N. A. (2011). Mapping and Modeling Chlorophyll-a Concentrations in Utah Lake Using Landsat 7 ETM+ Imagery. MSc Thesis. Brigham Young University, Utah, USA.
Norouzi, J., Jelokhani, H. and Ghasemi, A. (2011) Investigating and evaluating the quality of potable water in Ekbatan reservoir. International Conference of Water and Waste Water, Tehran. (In Farsi).
Ruddick, K. G., Gons, H. J., Rijkeboer, M., and Tilstone, G. (2001) Optical remote sensing of chlorophyll-a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Applied Optics, 40(21): 3575–3585.
Samarghandi, M.R., Weysi, K., Abouee Mehrizi, A., Kaseb, P. and Danaee, A. (2013) Investigating the water quality of ekbatan reservoir using NSFQI. Journal of North Khorasan University of Medical Sciences, 5(1): 63- 69. (In Farsi).
Schalles, J. F., Gitelson, A. A., Yacobi, Y. Z., and Kroenke, A. E. (1998) Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in a eutrophic lake. Journal of Phycology, 34(2): 383–390.
Smith, V. H. (2003) Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ Sci Pollut Res, 10: 126–139.
Smith, V. H. and Schindler, D. W. (2009) Eutrophication science: where do we go from here? Trends EcolEvol, 24: 201–207.
Stadelman, T.H., Brezonik, P. L. and Kloiber, S. (2001) Seasonal Patterns of Chlorophyll a and Secchi Disk Transparency in Lakes of East-Central Minnesota: Implications for Design of Ground- and Satellite-Based Monitoring Programs. Lake and Reservoir Management, 17 (4), pp. 299-314.
Tayebi E. and Saradjian, M. R. (2013) Detection and Monitoring of Algal Blooms in Persian Gulf Using Modis Images. International Geoinformatics Research and Development Journal, 4(1): 14-20.
Trescott, A. Isenstein E. M. and Park, M. H. (2013) Remote sensing of cyanobacterial blooms in Lake Champlain, USA.Water Science & Technology Water Supply. 13(5):1402. DOI: 10.2166/ws.2013.114.
Vincent, R. K., Qin, X., McKay, R. M. L., Miner, J., Czajkowski, K., Savino, J. and Bridgeman, T. (2004) Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment, 89(3):381–392.
Wang, F., Han, L., Kung, H. T. and Arsdale, R. B. V. (2006). Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee. International Journal of Remote Sensing, 27: 5269–5283.
Waxter, M. T. (2014) Analysis of Landsat Satellite Data to Monitor Water Quality Parameters in Tenmile Lake, Oregon. Master of Science in Civil and Environmental Engineering Civil and Environmental Engineering Master's Project Reports. Paper 2. Portland State University.
Weysi K. (2014) Investigation on the trophic status of Ekbatan Reservoir: a drinking water supply reservoir in Iran. J Res Health Sci,14:65-9.
Wheeler S. M., Morrissey, L. A., Levine, S. N., Livingston, G. P. and Vincent, W. F. (2011) Mapping cyanobacterial blooms in Lake Champlain's Missisquoi Bay using QuickBird and MERIS satellite data. Journal of Great Lakes Research, 38:68–75. Doi: 10.1016 / j.jglr. 2011. 06. 009.
Yang, W., Matsushita, B., Chen, J., Fukushima, T., and Ma, R. (2010) An enhanced three-band index for estimating chlorophyll-a in turbid case-II waters: Case studies of Lake Kasumigaura, Japan, and Lake Dianchi, China. IEEE Geoscience and Remote Sensing Letters, 7(4): 655–659.
Yu, H. B., Xi, B. D., Jiang, J. Y., Heaphy, M. J., Wang, H. L. and Li, D. L. (2011) Environmental heterogeneity analysis, assessment of trophic state and source identification in Chaohu Lake, China. Environ Sci Pollut Res, 18: 1333–1342.