مقایسه مدل AquaCrop و مدل پتانسیل حرارتی-تابشی تولید در برآورد عملکرد پتانسیل در بخشی از اراضی دشت مغان در استان اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 عضو هیأت علمی گروه مهندسی علوم خاک دانشگاه تهران

3 استاد، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

عملکرد پتانسیل برای شش گیاه زراعی گندم پاییزه، جو پاییزه، چغندرقند پاییزه، پنبه، ذرت و سویا در بخشی از اراضی دشت مغان با استفاده از دو مدل AquaCrop و مدل پتانسیل حرارتی-تابشی تولید،پس از واسنجی محاسبه شد. ضریب تبیین، ریشه میانگین مربعات خطای نرمال شده و شاخص تطابق برای عملکرد پتانسیل به ترتیب برای مدل AquaCrop، 99/0، 72/21، 99/0‌و برای مدل پتانسیل حرارتی-تابشی تولید یا مدل فائو 97/0، 25/54، 96/0‌، محاسبه شد. همچنین برای مقایسه تخمین بیوماس پتانسیل بین مدل AquaCrop و مدل فائو به ترتیب ضریب تبیین، 98/0 و 93/0‌، ریشه میانگین مربعات خطای نرمال شده، 55/23 و 10/58‌‌ و شاخص تطابق، 98/0 و 93/0‌محاسبه شد. بدین ترتیب مدل AquaCrop نسبت به مدل فائو از دقت بالاتری برخوردار بود. همچنین این مدل محاسبات کمتر، خروجی بیشتر و کاربرد گسترده‌تری نسبت به مدل فائو دارد. با استفاده از عملکرد پتانسیل مدل AquaCrop کسر اختلاف عملکرد محاسبه شد و بر این پایه محصولات در منطقه رتبه‌بندی شدند. بر اساس نتایج، کمترین کسر اختلاف عملکرد محصولات، در دشت مغان، به‌ترتیب برای جو، سویا، چغندرقند، گندم، پنبه و ذرت محاسبه شد. این رتبه‌بندی قابل‌استفاده در الگوی کشت منطقه به‌عنوان یک ضریب اکولوژیکی نیز خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison between AquaCrop and radiation-thermal production potential models for potential yield estimation in part of Moghan plain, Ardabil Province, Iran

نویسندگان [English]

  • Amir Izadfard 1
  • Fereydoon Sarmadian 2
  • MohamadReza Jahansooz 1
  • Gholamreza Peikani 1
  • Mohammadreza Chaichi 3
1 University of Tehran
2 University of Tehran
3 University of Tehran
چکیده [English]

Potential yields for six cultivated crops, wheat, barley, sugar beet, cotton, maize and soybean has been calculated using the AquaCrop and radiation thermal production potential method or FAO model in Khodaafarin region, Ardabil province, Iran. Determination coefficient, normalized root mean squared and index of agreement for potential yield in AquaCrop was 0/99, 21/72 and 0/99 and for FAO model was 0/97, 54/25 and 0/96 respectively. Also for comparison between the potential biomass for AquaCrop and FAO model the Determination coefficient 0/98, 0/93, normalized root mean squared 23/55, 58/10 and index of agreement 0/98, 0/93 was calculated, respectively. Based on the results, the AquaCrop model has better performance in comparison with to FAO model. The AquaCrop using less data calculation and more outputs and applications comparing with FAO model but has a more accuracy. The crops has been ranked based on the calculated yield gap fractions. The lowest yield gap fraction belongs to barley, soybean, sugar beet, wheat, cotton and maize respectively. This ranking could be used as an ecological coefficient for the region cropping pattern.

کلیدواژه‌ها [English]

  • Food security policy
  • Potential production simulation
  • Yield gap fraction
Alishiri, R., Paknejad, F., & Aghayari, F. (2014). Simulation of sugarbeet growth under different water regimes and nitrogen levels by aquacrop. International Journal of Biosciences (IJB), 4(4), 1-9.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), 05109.
Ashraf, S., Ashraf, V., & Abbaspour, H. (2011). Assessment of land production potential for barley using geographic information system (GIS) method. Indian Journal of Science and Technology, 4(12), 1775-1777.
Bagheri Bodaghabadi, M., Martínez‐Casasnovas, J. A., Khakili, P., Masihabadi, M. H., & Gandomkar, A. (2015). Assessment of the FAO traditional land evaluation methods, A case study: Iranian Land Classification method. Soil Use and Management, 31(3), 384-396.
Bhatia, V. S., Singh, P., Wani, S. P., Chauhan, G. S., Rao, A. K., Mishra, A. K., & Srinivas, K. (2008). Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. agricultural and forest meteorology, 148(8), 1252-1265.
Chandra, A. C., & Lontoh, L. A. (2010). Regional food security and trade policy in Southeast Asia: The role of ASEAN. Manitoba: International Institute for Sustainable Development.
De la Casa, A., Ovando, G., Bressanini, L., & Martínez, J. (2013). AquaCrop model calibration in potato and its use to estimate yield variability under field conditions. Atmospheric and Climate Sciences, 3, 397-407
Diepen, C. V., Wolf, J., Keulen, H. V., & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil use and management, 5(1), 16-24.
Etedali, s., givi, j., & nouri, m. (2012). Comparison between land production potential prediction for maize, using fao and wageningen models and assessment of management level for its cultivation around shahrekord city. Journal of water and soil, 26(4), 837-885
Evans, L. T., & Fischer, R. A. (1999). Yield potential: its definition, measurement, and significance. Crop Science, 39(6), 1544-1551.
Ghanbbari, A., & Tavassoli, A. (2013). Simulation of Wheat Yield Using AquaCrop Model in Shirvan Region. International Journal of Agriculture and Crop Sciences, 6(6), 342.
Heng, L. K., Hsiao, T., Evett, S., Howell, T., & Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 101(3), 488-498.
Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field crops research, 27(4), 337-350.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., ... & Ritchie, J. T. (2003). The DSSAT cropping system model. European journal of agronomy, 18(3), 235-265.
Kobayashi, K., & Salam, M. U. (2000). Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal, 92(2), 345-352.
Koocheki, A., & Nassiri Mahallati, M. (2012). Quantifying yield potential and yield gap for corn (Zea mays L.) in the Northeast Iran. International Journal of Agriculture and Crop Sciences, 4.
Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: how do climate and agricultural management explain the ‘yield gap’of croplands around the world?. Global ecology and biogeography, 19(6), 769-782.
Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34(1), 179.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254-257.
Neumann, K., Verburg, P. H., Stehfest, E., & Müller, C. (2010). The yield gap of global grain production: A spatial analysis. Agricultural systems, 103(5), 316-326.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009).AquaCrop Reference Manual. FAO. Land and Water Division, Rome, Italy.
Sadras, V. O. (2004). Yield and water-use efficiency of water-and nitrogen-stressed wheat crops increase with degree of co-limitation. European Journal of Agronomy, 21(4), 455-464.
Schuol, J., & Abbaspour, K. C. (2007). Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecological Modelling, 201(3), 301-311.
Seyedjalali, s. (2004). Modelling of land production potential for irrigated cotton in qom masileh, qom province. The fourth international iran & russia conference, 642-647
Sohrabi, a., & chegini, m. (2011). Evaluation of land suitability and radiation-thermal production potential of sugar beet by fao method in the fields of department of agriculture of lorestan, iran and its comparison with silakhoor plain. Journal of Sugar beet, 2(27), 185196
Steduto, P., Hsiao, T. C., & Fereres, E. (2007). On the conservative behavior of biomass water productivity. Irrigation Science, 25(3), 189-207.
Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F. (1985). Land evaluation. State University of Ghent, International Training Centre for post-graduate soil scientists.
Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F. (1993). Land evaluation part III, crop requirements. Agricultural publication, (7).
Taati, A., Sarmadian, F., Mousavi, A., & Rahmani, A. (2015). Agro-ecological zoning for cultivation of Alfalfa (Medicago sativa L.) using RS and GIS. Scientia, 9(2), 93-100.
Todorovic, M., Albrizio, R., Zivotic, L., Saab, M. T. A., Stöckle, C., & Steduto, P. (2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101(3), 509-521.
Torriani, D., Calanca, P. L., Schmid, S., Beniston, M., & Fuhrer, J. (2007). Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research, 34, 59-69.
Ye, L., & Ranst, E. V. (2002). Population carrying capacity and sustainable agricultural use of land resources in Caoxian County (North China). Journal of Sustainable Agriculture, 19(4), 75-94.