Abdi, A. Hassanzadeh, Y. Talatahari, S. Fakheri-Fard, A. & Mirabbasi, R. (2016). Regional bivariate modeling of droughts using L-comoments and copulas. Stochastic Environmental Research and Risk Assessment, DOI: 10.1007/s00477-016-1222-x.
Adamowski, K. (2000). Regional analysis of annual maximum and partial duration flood data by nonparametric and L-moment methods. 229(3), 219-231.
Dastoorani, M. Hayatzadeh, M. Fathzadeh, A. Hakimzadeh, M. (2014). Review the Efficiency of Empirical Relations on Estimating the Peak Flow Rate of Flood in Arid Areas of Central Iran. Geography and Development Iranian Journal, 12(36), 145-160.
De Michele, C. and Salvadori, G. (2003). A generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐copulas. Journal of Geophysical Research: Atmospheres, 108(D2).
De Michele, C. Salvadori, G. Canossi, M. Petaccia, A. & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50-57.
Hamed, K. & Rao, A. R. (1999). Flood frequency analysis. CRC press.
Hosking, J. R. M. & Wallis, J. R. (1988). The effect of intersite dependence on regional flood frequency analysis. Water Resources Research, 24(4), 588-600.
Joe, H. (1997). Multivariate models and multivariate dependence concepts. London: Chapman & Hall, 399 pp.
Kumar, R. & Chatterjee, C. (2005). Regional flood frequency analysis using L-Moments for North Brahmaputra region of India. Journal of Hydrologic Engineering, 10(1), 1-7.
Kumar, R. Goel, N. K. Chatterjee, C. & Nayak, P. C. (2015). Regional flood frequency analysis using soft computing techniques. Water Resources Management, 29(6), 1965-1978.
Labat, D. Mangin, A. & Ababou, R. (2002). Rainfall–runoff relations for karstic springs: multifractal analyses. Journal of Hydrology, 256(3), 176-195.
Rahimi, L. Dehghani, A. A. Abdolhosseini, M. & Ghorbani, K. (2014). Flood frequency analysis using archimedean copula functions based on annual maximum series (Case Study:Arazkuseh hydrometric station in Golestan province). Iranian Journal of Irrigation and Drainage, 2(8), 353-365.
Malamud, B. D. & Turcotte, D. L. (2006). The applicability of power-law frequency statistics to floods. Journal of Hydrology, 322(1), 168-180.
May, R. Zainol, Z. & Shukor, M. F. B. (2015). Flood Frequency Analysis Due to Climate Change Condition at the Upper Klang River Basin. In ISFRAM 2014 (pp. 271-281). Springer Singapore.
Ming, X. Xu, W. Li, Y. Du, J. Liu, B. & Shi, P. (2015). Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period. Stochastic environmental research and risk assessment, 29(1), 35-44.
Nelsen. R. B. (2006). An introduction to copulas. Springer, New York, 269p.
Nouri Gheidari, M. N. Danko, A. Shahraki, M. (2015). Application of Power Law in Flood Frequency Analysis of Sarbaz River. Journal of Water and Soil Science, 24(4), 45-59.
Pandey, G. Lovejoy, S. & Schertzer, D. (1998). Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. Journal of Hydrology, 208(1), 62-81.
Saad, C. El Adlouni, S. St-Hilaire, A. & Gachon, P. (2015). A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Québec, Canada) record flood. Stochastic Environmental Research and Risk Assessment, 29(1), 275-294.
Salvadori, G. and De Michele, C. (2007). On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369-380.
Sanikhani, H. Mirabbasi Najaf Abadi, R. & Dinpashoh, Y. (2014). Modeling of temperature and rainfall of tabriz using copulas. Journal of Irrigation and Water Engineering, 5(17), 123-134. (In Farsi).
Shafaei, M. Fakheri-Fard, A. Dinpashoh, Y. Mirabbasi, R. & De Michele, C. (2016). Modeling flood event characteristics using D-vine structures. Theoretical and Applied Climatology, DOI: 10.1007/s00704-016-1911-x.
Sklar A (1959) Fonctions de Repartition and Dimensions et LeursMarges. Publications de L’Institute de Statistique, Universite’ de Paris, Paris, 8: 229–231.
Tessier, Y. Lovejoy, S. Hubert, P. Schertzer, D. & Pecknold, S. (1996). Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. Journal of Geophysical Research: Atmospheres, 101(21), 26427-26440.
White, C. J. (2007). The Use of Joint Probability Analysis to Predict Flood Frequency in Estuaries and Tidal Rivers, University of Southampton.
Yue, S. & Rasmussen, P. (2002). Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrological Processes, 16(14), 2881-2898.
Yue, S. Ouarda, T. B. M. J. & Bobée, B. (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246(1), 1-18.
Zhang, L. & Singh, V. P. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2), 150-164.
Zhang, Q. Chen, Y. D. Chen, X. & Li, J. (2011). Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. Journal of Hydrologic Engineering, 16(7), 598-607.