مقایسه سیاست جیره بندی توسط الگوریتمهای فراکاوشی با سیاست بهره برداری استاندارد در بهره‌برداری بهینه از مخزن سد وشمگیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه زابل- دانشکده آب و خاک- گروه مهندسی آب

2 دانشگاه زابل- دانشکده آب و خاک- گروه مهنسی آب

3 دانشگاه تهران

4 دانشگاه پیام نور بوشهر- گروه آب و خاک

چکیده

یکی از اصلی‌ترین منابع آبی موجود، منابع سطحی آب و به طور مشخص آب موجود در مخازن سدها می‌باشد. یکی از روش­های بهبود بهره­برداری از مخازن اعمال سیاست جیره­بندی در مخزن است. تابع هدف در این تحقیق کمینه‌سازی نسبت کمبود با اعمال سیاست‌ جیره­بندی بر مصارف کشاورزی سد وشمگیر در استان گلستان است. به این منظور دوره سه‌ساله خشکسالی متوالی از سال 1380 تا 1382 برای این تحقیق انتخاب گردید. سیاست جیره­بندی با استفاده از الگوریتم­های بازپخت، ژنتیک، رقابت استعماری صورت گرفته و سپس نتایج با سیاست بهره­برداری استاندارد مقایسه می‌شوند. نتایج نشان می‌دهند که الگوریتم بازپخت با اعمال سیاست جیره‌بندی با اعتمادپذیری 94/99 درصد، برگشت‌پذیری 50%، شاخص پایداری 39/49، آسیب‌پذیری 6% و درصد تأمین 99 دارای بالاترین کارایی و همچنین سیاست بهره‌برداری استاندارد نیز با اعتمادپذیری 25/99 درصد، برگشت‌پذیری 11%، شاخص پایداری 22/9، آسیب‌پذیری 5/15% و درصد تأمین 80 دارای پایین‌ترین کارایی در بهره‌برداری از مخزن وشمگیر در دوره خشکسالی بوده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of Hedging Policy using MetaHuristic Algorithm and Standard Operation Policy in Optimal Operation of Voshmgir Reservoir Dam in during Drought

نویسندگان [English]

  • Amolbani Mohammadreza poor 1
  • Zohreh Sadat Moosavi Rastegar 2
  • Omid Bozorg Haddad 3
  • Mahboobeh Ibrahimi 4
1 Zabol University
2 Zabol University
3 University of Tehran
4 Payame noor University of Booshehr
چکیده [English]

Surface water resources constitute a main part of water resources on earth, specifically surfaces of water at dam reservoirs. One of the methods to improve utilization of such rich storage reservoirs is the policy of Hedging. The objective function followed in this study is to minimize the rate of this scarcity through implementing the policy of water rationing for agricultural purposes in conjuction with Voshmgir Dam in Golestan province. Hence, a three-year consecutive period of drought (1380- 1382) was selected for the study. The Hedging policy was performed using Annealing, Genetic and Imperialist competition algorithms. Then, the results were compared with the Standard Optimization Policy (SOP). The results showed that the Annealing Algorithm with the Hedging policy of 99.94% reliability, 50% Resilience, 49.39 Sustainability, 6% Vulnerability and 99 percent supply presented a  high performance. Also the Standard operation policy with 99.25% reliability, 11 Resilience, 9.22 Sustainability, 15.5 Vulnerability along with 80 percent supply renders a low performance in Voshmgir reservoir operation during drought periods.

کلیدواژه‌ها [English]

  • Drought
  • Hedging Policy
  • Standard Operation Policy
  • Voshmgir Dam
  • MetaHiuristic Algorithm
Adeloye, A. J., Soundharajan, B. S., Ojha, C. S. P. and Remesan, R. (2015). Effect of Hedging-Integrated Rule Curves on the Performance of the Pong Reservoir (India) During Scenario-Neutral Climate Change Perturbations. Water Resour Manag. 29,3387–3407
Afshar, A., Masoumi, F. and Sandoval Solis, S. (2015). Reliability Based Optimum Reservoir Design by Hybrid ACO-LP Algorithm. Journal of Water Resour Manage. 29,2045–2058.
Ashofteh, P.S and Bozorg Haddad, O. 2015. Use of Multi-Conditional Functions in the Field of Reservoir Management and under Climate Change. Iranian Journal of Soil and water Research. 45(4), 397-404. (In Farsi)
Atashpaz-Gargari, E., Lucas, C. (2007). Imperialist Competitive Algorithm: An algorithm for Optimization inspired by imperialistic competition, IEEE Congress on Evolutionary Computation, 4661–4667.
Azarafza, H., Rezaii, H., Behmanesh, J. and Besharat, S. (2012). Results Comparison of Employing PSO, GA and SA Algorithms in Optimizing Reservoir Operation (Case Study: Shaharchai Dam, Urmia, Iran). Journal of Water and Soil. 26(5), 1101-1108.(In Farsi)
Bashiri-Atrabi, H., Qaderi, K., Rheinheimer, D., E. and Sharifi, E. (2015). Application of Harmony Search Algorithm to Reservoir Operation Optimization. Journal of Water Resources Manage. 29,5729–5748
Borhani Dariane, A., Shahidi, L. (2008). Optimization of Reservoir Operation using Simulated Annealing and other Heuristic Methods. International Journal of Engineering Sciences. 19(8), 31-40
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston.
Goodarzi, E., Ziaei, M. and Hossinipour, E. (2015.) Optimization Analysis in Hydrosystem Engineering,Topics in Safety, Risk, Reliability and Quality.Springer International Publishing Switzerland.Chapter 7, 218-238.
Hoseini, H., Nagafi Gilaii, A., Zakertiri, M., (2013). Optimal Operation in Actual, satisfied and Hedging Condition and Application in Drawing of Latian, Mamloo Reservoirs Rule Curve. Fifth conference of Water Resource Management.  University of Shahid Beheshti.Tehran, Iran.
Hogati, A., Farid_ Hoseini, A. R., Alizadeh, A., Entezari, M. (2013). Reservoir operation model with the Hedging policy procedure and its application in the preparation of the Dosty reservoir rule curve. Sevens Conference of Civil Engineering, Zahedan University.  Iran.
Karami, F., Borhani Dariane, A. (2013). Comparison of Hedging Policies in Reservoir Management under Drought Condition. Journal of Water and wastewater. 25(3), 76-85.
Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, (220), 671-680.
Marton, D., Kapelan, Z. (2014). Risk and Reliability Analysis of Open Reservoir Water Shorages Using Optimization. Procedia Engineering. 89, 1478-1485 (In Farsi)
Ming, B., Chang, J.X., Huang, Q., Wang, Y., Huang, S.Z. (2015). Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm. Journal of Water Resource Management. 29, 5671–5687.
Razaghi, P., Babazadeh, H. and Shourian, M. 2014. Development of multi-purpose reservoir operation hedging rule in water resources shortage conditions using MODSIM8.1. Journal of Water and Soil Resource Conservation. 3(2), 11-23.  (In Farsi)
Taghian, M., Radmanesh, F., Akhondali, A. and Haghighi, a. 2012. Optimization of hedging Rule for Reservoir Dams via Connecting a Genetic Algorithm to a Simulation Model. Journal of Irrigation Science and Engineering. 35(2), 41-50.  (In Farsi)
Zeynali, M.J., Mohammad Reza Pour, O. and Foroghi, F. 2015. Evaluation of Particle Swarm, Genetic and Continuous Ant Colony Algorithms in Optimal Operation of Doroodzan Dam Reservoir. Journal of Water and Soil sciences. 25(3), 27-40.