پیش بینی بلند مدت جریان رودخانه با استفاده از روش تحلیل طیف تکین در حوضه کرخه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری پردیس کشاورزی و منابع طبیعی کرج- دانشگاه تهران و مربی دانشگاه شیراز

2 هیات علمی / دانشگاه تهران

چکیده

در ده‌های گذشته روش‌های مختلفی برای تجزیه و تحلیل و پیش‌بینی متغیرهای فیزیکی استفاده شده است. یکی از آنها، روش آماری تحلیل طیف تکین (SSA) می‌باشد. SSA از روش‌های مورد استفاده در مدل‌سازی فرایندهای مختلف آماری است و اخیراً استفاده از آن در رشته‌های مختلف مهندسی از جمله منابع آب به منظور حذف اجزاء تصادفی موجود در سری‌های زمانی گسترش یافته است. هدف اصلی از این تحقیق پیش‌بینی مقادیر جریان رودخانه‌های حوضه کرخه با استفاده از روش SSA می-باشد. ابتدا ایستگاه‌های شاخص در حوضه کرخه (پنج ایستگاه) برای این کار انتخاب گردید. دوره پر آبی ایستگاه‌ها تعیین شد. برای مدل‌سازی 70 درصد داده‌ها برای واسنجی و 30 درصد داده‌ها برای صحت‌سنجی در نظر گرفته شد. ابتدا از روش SSA برای پردازش اولیّه داده‌ها و حذف نوفه موجود در سری‌های زمانی جریان رودخانه استفاده شد. سپس از الگوریتم بازگشتی روش SSA برای ساخت مدل پیش‌بینی آبدهی رودخانه در ایستگاه‌های حوضه کرخه استفاده شد. برای بررسی عملکرد مدل از معیار جذر میانگین مربعات خطا نرمال شده، میانگین قدرمطلق خطای نسبی و ضریب همبستگی استفاده گردید. در مرحله صحت-سنجی بیشترین مقدار آماره NRMSE و MARE به‌ترتیب برابر 0.47 و 0.5برای ایستگاه‌های پل‌چهر بود. کمترین مقدار آماره NRMSE برای ایستگاه پل دختر و چم انجیر نزدیک به هم و برابر 0.3 و 0.31 و کمترین مقدار آماره MARE برای ایستگاه چم انجیر و پل دختر، نزدیک به هم و برابر 0.29 و 0.30 بود. در نهایت بهترین و ضعیف‌ترین نتیجه در دو مرحله واسنجی و صحت سنجی به‌ترتیب برای ایستگاه‌های چم انجیر و پل‌چهر به‌دست آمد. بر اساس نتایج این تحقیق می‌توان با به‌کارگیری روش SSA مقادیر جریان رودخانه را با دقت مناسب پیش‌بینی نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Long-lead streamflow forecasting using singular spectrum analysis in the Karkheh basin

نویسندگان [English]

  • Farid Foroughi 1
  • Shahab Araghinejad 2
1 Faculty member of Shiraz Uinversity Ph.D Student of Tehran University
2 Faculty member / Tehran University
چکیده [English]

In the past decade the different methods have been used to analyze and predict the physical variables, one of which is singular spectrum analysis (SSA) statistical methods. SSA is one of the methods, used in modeling various statistical processes and more recently, its use in various engineering disciplines including water resources, in order to eliminate random components in time series has been expanded. The main objective of this study was to forecast streamflow in the Karkheh basin using singular spectrum analysis. The gage stations in the Karkheh basin (five station) were selected for this study. The high flow period for these gage stations were determined. In order to modeling methods, 70% and 30% of data were used for calibration and validation respectively. The singular spectrum analysis method was used for pre-processing of data and elimination of noise in the time series of streamflow. Then, the recursive algorithm of the singular spectrum analysis model was used to develop forecasts models of streamflow in the Karkheh basin gage stations. To evaluate the performance of the model Normalized root mean square error, mean absolute error and correlation coefficient were used. In the validation the highest and lowest value of the NRMSE and MARE statistics were 0.47 and 0.50 for Pol Chehr station. The lowest value of the NRMSE statistic for Pol Dokhtar and Cham Anjir stations was 0.3 and 0.31 respectively and close to each other and the lowest value of the MARE statistic for Cham Anjir and Pol Dokhtar stations was 0.29 and 0.30 respectively and close to each other. Finally, the best and the weakest results in two stages of calibration and validation were for Cham Anjir and Pol Chehr Stations respectively. The results of this research showed that singular spectrum analysis can be used to forecast streamflow with reasonable accuracy

کلیدواژه‌ها [English]

  • Long lead forecasting
  • discharge
  • Streamflow
  • Singular Spectrum Analysis
  • Karkheh basin
Akbarinia, M. (2012). Long Lead Stream flow Forecasting using data-driven models case study: Karkheh river MSc. thesis, Irrigation and reclamation engineering group, Tehran University, Karaj. (In Farsi)
Basilevsky, A., Derek, P., and Hum, J. (1979). Karhunen-Loeve analysis of historical time series with an application to plantation births in Jamaica. Journal of the American Statistical Associations, 74: 284-290.
Broomhead, D. S., and King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica D, 20: 217-236.
Broomhead, D. S., King, G. P., and Pike, E. R. (1987). Singular spectrum analysis with application to dynamical systems. Noise and Fractal, IOP Publication, Bristol.
Danilov, D. (1997). Principal components in time series forecast. Journal of Computational and Graphical Statistics, 6:112–121.
Golyandina, N., Nekrutkin, V., and Zhiglovsky, A. (2001). Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC.
Hajibigloo, M., Ghezelsofloo, A. A., and Alimirzaei, H. (2013). Discussion and forecast monthly average rainfall techniques using SARIMA (case study: pluviometry station Babaaman Bojnourd). Journal of Irrigation Science and Engineering, 36 (3): 41-54. (In Farsi)   
Hassani, H. (2007). Singular Spectrum Analysis: Methodology and Comparison. Journal of Data Science, 5(2007): 239-257.
Hassani, H., Mahmoudvand, R., and Yarmohammadi, M. (2010). Filtering and denoising in linear regression analysis. Fluctuation and Noise Letters, 9 (4): 343-358.
Hassani, H. Mahmoudvand, R. and Zokaei, M. (2011). Separability and window length in singular spectrum analysis. C. R. Acad. Sci. Paris, Ser. I, 349: 987–990.
Hassani, H., and Thomakos, D. (2010). A review on singular spectrum analysis for economic and financial time series, Statistics and Its Interface. 3(3): 377–397.
Jamab Consulting Engineers. (2006). Water balance report of Karkheh River basin area: Preliminary analysis, Ministry of Energy, Tehran. Iran. (In Farsi)
Jamali, F. S., (2009). An artificial neural network model for Shahcheraghi reservoir inflow forecasting using snow cover area data. MSc. thesis, Irrigation and drainage engineering group, Tehran University, Pakdasht. (In Farsi)
Kumaresan, R., and Tufts, D. W. (1980). Data-adaptive principal component signal processing. In Proc. of the 19th IEEE Conf. on Decision and Control, 19: 949–954.
Lisi, F. Nicolis, O., and Sandri, M. (1995). Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Processing Letters, 2 (4): 6-10.
Marques, C. A. F., Ferreira, J. A., Rocha, A., Castanheira, J. M., Melo-Goncalves, P., Vaz, N., and Dias, J. M. (2006). Singular spectrum analysis and forecasting of hydrological time series. Physics and Chemistry of the Earth, 31:1172–1179.
Meidani, E. (2012). Long lead streamflow forecasting using statistical methods: case study of Karoon and Dez rivers. MSc. thesis, Irrigation and reclamation engineering group, Tehran University, Karaj. (In Farsi)
Menezes, M. L., Souza, R. C., and Moreira Pessanha, J. F. (2015). Electricity consumption forecasting using singular spectrum analysis, Dyna. rev. fac. nac. minas, 82 (190): 138-146.
Sivapragasam, C., Liong, S. Y., and Pasha, M. F. K. (2001). Rainfall and runoff forecasting with SSA-SVM approach. Journal of Hydroinformatics 3 (7): 141-152.
Vautard, R., and M. Ghil. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 35: 395–424.
Wu, C. L., Chau, K. W., and Fan, C. (2010). Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. Journal of Hydrology, 389: 146-167.