ارزیابی مدل AquaCrop در تخمین عملکرد ذرت و شوری خاک تحت شرایط مدیریت‌های مختلف زراعی و آبیاری با آب‌شور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 عضو هیأت علمی دانشگاه شهید چمران اهواز

3 عضو هیأت علمی دانشگاه چمران اهواز

4 استادیار، دانشگاه شهید چمران اهواز

چکیده

   اخیرا فائو نسخه 4 مدل AquaCrop را ارائه کرده است که قادر به پیش­بینی اثر آبیاری با آب شور بر عملکرد محصول و شوری خاک می­باشد. در تحقیق حاضر، مدل AquaCrop تحت شرایط مدیریت­های مختلف زراعی و آبیاری با آب شور برای ذرت دانه­ای (رقم SC.704) مورد ارزیابی قرار گرفت. آزمایش­های مزرعه­ای مطالعه حاضر در مزرعه کشاورزی دانشگاه شهید چمران اهواز اجرا گردید. مدیریت­های زراعی مختلف شامل بدون استفاده از بقایای گیاهی، استفاده از بقایای گیاهی در سطح خاک به عنوان خاکپوش و اختلاط بقایای گیاهی با لایه سطحی خاک تا عمق 30 سانتیمتر و شوری آب آبیاری در سه سطح شامل شوری آب رودخانه کارون (به طور متوسط2 دسی زیمنس بر متر)، شوری 5/4 و 7 دسی زیمنس بر متر بود. پس از واسنجی مدل به منظور تعدیل برخی پارامتر­های ورودی، صحت­سنجی مدل انجام شد. در مرحله صحت­سنجی مقدار ضریب تبیین (R2)، خطای نسبی (RE)، ضریب باقیمانده (CRM) و متوسط ریشه میانگین مربعات خطای نرمال شده (NRMSE) برای شوری خاک به ترتیب 83/0،6/10 درصد، 04/0 و 64/11، برای عملکرد دانه به ترتیب 93/ ، 2/5 درصد، 01/0 و 58/5، برای زیست توده به ترتیب 99/0، 2/4 درصد، 02/0- و 48/4 و برای پوشش سایه­انداز به ترتیب 97/0، 16 درصد، 08/0 و 71/14 به­دست آمد. متوسط خطا در مدیریت­های کاربرد و عدم کاربرد بقایای گندم برای شوری خاک به ترتیب 6/9 و 7/12 درصد، برای عملکرد دانه به ترتیب 6 و 5/3 درصد، برای زیست توده به ترتیب 8/4 و 1/3 درصد و برای پوشش سایه­انداز به ترتیب 6/14 و 8/18 درصد تعیین شد. نتایج نشان داد که عملکرد دانه، زیست توده، شوری خاک و پوشش سایه­انداز به خوبی شبیه­سازی شدند. هرچند دقت مدل در تخمین شوری خاک و پوشش سایه­انداز کمتر از سایر پارامتر­ها بود و با افزایش شوری دقت مدل کاهش یافت. همچنین در شرایط اعمال مدیریت­های زراعی، دقت مدل در تخمین شوری و پوشش سایه­انداز افزایش و در تخمین عملکرد دانه و زیست توده کاهش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

AquaCrop model evaluation to estimate of Maize yield and soil salinity under different agriculture managements and irrigation with saline water

نویسندگان [English]

  • moloud heidarinia 1
  • Saeid Boroomand Nasab 2
  • AbdAli Naseri 3
  • Mohammad Albaji 4
1
2
3
4 Assistant Professor, Shahid Chamran University, Ahvaz
چکیده [English]

Recently, FAO has proposed the version 4 of AquaCrop model that can simulate the effect of irrigation with saline water on yields and soil salinity. In this study, the AquaCrop model was evaluated under different agriculture managements and irrigation with saline water for Maize (SC.704). Field experiments of this study were done in the agriculture farm of Shahid Chamran University. Different crop managements included without crop residues, use of crop residues on soil surface as mulch and mix of crop residues with surface soil layer to 30 cm depth and water irrigation salinity at three level included water salinity of Karoun river ( On average 2ds/m), 4.5 and 7 ds/m. After model calibration to offset some input parameters, model validation was performed. The amount of determination coefficient (R2), relative error (RE), coefficient of residual mass (CRM) and Normalize root mean square error (NRMSE) in validation for soil salinity were respectively 0.83, 10.6%, 0.04 and 11.64, for yield were respectively 0.93, 5.2%, 0.01 and 5.58, for biomass were respectively 0.99, 4.2%, -0.02 and 4.48 and for canopy cover were respectively 0.97, 16%, 0.08 and 14.71. The average error in use and not use of Wheat residues for soil salinity was respectively 9.6% and 12.7%, for yield was respectively 6% and 3.5%, for biomass was respectively 4.8% and 3.1% and for canopy cover was respectively 14.6% and 18.8%. The results showed that soil salinity, yield, biomass and canopy cover were simulated well. However, the model accuracy was lower to estimate of soil salinity and canopy cover and it was decreased with salinity increase. Also, the model accuracy was increased in soil salinity and canopy cover estimation and was decreased in yield and biomass estimation under agriculture managements application condition.

کلیدواژه‌ها [English]

  • Biomass
  • Canopy cover
  • crop residues
  • Mulch
Bezbordove, G. A., Shadmanov, D. K., Mirhashimov, R. T., Yuldashev, T. A., Qureshi, S., Noble, A. D. and Qadir, M. (2010). Mulching and water quality effects on soil salinity and sodocity dynamics and cotton productivity in Central Asia. Journal of Agriculture, ecosystems and environment, 138: 95- 102.
Doorenbos, J. and Kassam, A. H. (1979). Yield response to water. Irrigation and Drainage Paper, No. 33. FAO, Rome.
Droogers, P. and Kite, G. (2001). Simulation modeling at different scales to evaluated the productivity of water. Journal of Physics and Chemistry of the Earth, 26(12), 877-880.
Ebrahimi, M., Rezaverdinezhad, V. and Majnouni Haris, A. (2015). Simulation of Maize growth under different management of water and Nitrogen with AquaCrop model. Journal of Water and Soil Research in Agriculture, 46(2), 207-220. (In Farsi)
Geerts, S., Raes, D., Garcia, M., Miranda, R., Cusicanqui, J. A., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., Condori, O., Mamani, J., Morales, B., Osco, V. and Steduto, P. (2009). Simulating yield response of Quania to water availability with AquaCrop. Journal of Agronomy, 101: 499- 508.
Gholami, A. R. and Pirmoradian, N. (2011). Calibration of a simple model (VSM) for yield prediction of Corn under different water and nitrogen managements. Journal of Water and Soil, 25 (2), 258-265. (In Farsi)
Golabi, M. and Naseri, A. A. (2015). Evaluation of AquaCrop model in predicting of Sugarcane yield and soil profile salinity under salinity stress. Journal of Water and Soil Research in Agriculture, 46(4), 685-694. (In Farsi) 
Hasan-Li, M., Afrasiab, P. and Ebrahimian, H. (2015). Field assessment and performance of SALTMED and AquaCrop models in the alternative irrigation management with saline and fresh water. Journal of Water and Soil Research in Agriculture, 46(3), 487-498. (In Farsi)
Khorsand, A., Rezaverdinezhad, V. and Shahidi, A. (2014). Evaluation of AquaCrop model in predicting of Wheat yield, soil profile moisture and salinity under salinity and water stress. Journal of Water and Irrigation Management, 4(1), 89-104. (In Farsi)
Kumar, P., Sarangi, A., Singh, D. K. and Parihar, S. S. (2014). Evaluation of AquaCrop model in predicting Wheat yield and water productivity under irrigated saline regimes. Journal of Irrigation and Drainage, 63, 474- 487.
Liaghat, A. and Esmaili, Sh. (2003). The effect of fresh and saline water conjunction on Corn yield and salt concentration in the root zone. Journal of Agriculture science and Natural Resource, 10 (2), 159- 170. (In Farsi)
Liu, J., Pattey, E. and Admiral, S. (2013). Assessment of in situ crop LAI measurement using unidirectional view digital photography. Journal of Agricultural and Foresteteorology, 169:25-34.
 Mohammadi, M., Davari, K., Ghahraman, B., Ansari, H. and Haghverdi, A. (2015). Calibration and validation of AquaCrop model for simulation of spring Wheat under salinity and water stress. Journal of Water Research in Agriculture, 29(3), 277-295. (In Farsi)
Nasrolahi, A. H. (2013). The study on effect of drip irrigation different managements with saline water on Corn yield and salt distribution in root zone. Ph. D. dissertation, Shahid Chamran University, Ahvaz, Iran. (In Farsi)
Raes, D., Steduto, P., Hsiao, TC. and Fereres, E. (2012). Refrence manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
Soltani- Mohammadi, A., Kashkouli, H. A., Naderi, A. and Boroomand- Nasab, S. (2011). The effect of all water and salinity stress on yield and yield components of Maize at different growth stages in Ahvaz conditions. Journal of Water Research in Agriculture, 9, 161- 170. (In Farsi)
Steduto, P., Hsiao, T. C., Raes, D. and Ferres, E. (2007). On the conservative behavior of biomass water productivity. Journal of Irrigation Science, 25, 189- 207.
Steduto, P., Hsiao, T. C., Raes, D. and Ferres, E. (2009). AquaCrop- the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Journal of Agronomy, 101, 426- 437.
Tishehzan, P. (2011). Investigate the root zone salinity changes under the water table condition and the use of mulch in the appeal stage of Palm. Ph. D. dissertation, Shahid Chamran University, Ahvaz, Iran. (In Farsi)
Todorvic, M., Albrizio, R., Zivotic, L., Abi- Saab, M., Stockle, C. and Steduto, P. (2009). Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of Sunflower growth under different water regimes. Journal of Agronomy, 101: 509- 521.
Zhao, Y., Pang, H., Wang, J., Huo, L. and Li, Y. (2014). Effects of straw mulch and buried straw on soil moisture and salinity in relation to Sunflower growth and yield. Journal of Field crop research, 161, 16- 25.