Bezbordove, G. A., Shadmanov, D. K., Mirhashimov, R. T., Yuldashev, T. A., Qureshi, S., Noble, A. D. and Qadir, M. (2010). Mulching and water quality effects on soil salinity and sodocity dynamics and cotton productivity in Central Asia. Journal of Agriculture, ecosystems and environment, 138: 95- 102.
Doorenbos, J. and Kassam, A. H. (1979). Yield response to water. Irrigation and Drainage Paper, No. 33. FAO, Rome.
Droogers, P. and Kite, G. (2001). Simulation modeling at different scales to evaluated the productivity of water. Journal of Physics and Chemistry of the Earth, 26(12), 877-880.
Ebrahimi, M., Rezaverdinezhad, V. and Majnouni Haris, A. (2015). Simulation of Maize growth under different management of water and Nitrogen with AquaCrop model. Journal of Water and Soil Research in Agriculture, 46(2), 207-220. (In Farsi)
Geerts, S., Raes, D., Garcia, M., Miranda, R., Cusicanqui, J. A., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., Condori, O., Mamani, J., Morales, B., Osco, V. and Steduto, P. (2009). Simulating yield response of Quania to water availability with AquaCrop. Journal of Agronomy, 101: 499- 508.
Gholami, A. R. and Pirmoradian, N. (2011). Calibration of a simple model (VSM) for yield prediction of Corn under different water and nitrogen managements. Journal of Water and Soil, 25 (2), 258-265. (In Farsi)
Golabi, M. and Naseri, A. A. (2015). Evaluation of AquaCrop model in predicting of Sugarcane yield and soil profile salinity under salinity stress. Journal of Water and Soil Research in Agriculture, 46(4), 685-694. (In Farsi)
Hasan-Li, M., Afrasiab, P. and Ebrahimian, H. (2015). Field assessment and performance of SALTMED and AquaCrop models in the alternative irrigation management with saline and fresh water. Journal of Water and Soil Research in Agriculture, 46(3), 487-498. (In Farsi)
Khorsand, A., Rezaverdinezhad, V. and Shahidi, A. (2014). Evaluation of AquaCrop model in predicting of Wheat yield, soil profile moisture and salinity under salinity and water stress. Journal of Water and Irrigation Management, 4(1), 89-104. (In Farsi)
Kumar, P., Sarangi, A., Singh, D. K. and Parihar, S. S. (2014). Evaluation of AquaCrop model in predicting Wheat yield and water productivity under irrigated saline regimes. Journal of Irrigation and Drainage, 63, 474- 487.
Liaghat, A. and Esmaili, Sh. (2003). The effect of fresh and saline water conjunction on Corn yield and salt concentration in the root zone. Journal of Agriculture science and Natural Resource, 10 (2), 159- 170. (In Farsi)
Liu, J., Pattey, E. and Admiral, S. (2013). Assessment of in situ crop LAI measurement using unidirectional view digital photography. Journal of Agricultural and Foresteteorology, 169:25-34.
Mohammadi, M., Davari, K., Ghahraman, B., Ansari, H. and Haghverdi, A. (2015). Calibration and validation of AquaCrop model for simulation of spring Wheat under salinity and water stress. Journal of Water Research in Agriculture, 29(3), 277-295. (In Farsi)
Nasrolahi, A. H. (2013). The study on effect of drip irrigation different managements with saline water on Corn yield and salt distribution in root zone. Ph. D. dissertation, Shahid Chamran University, Ahvaz, Iran. (In Farsi)
Raes, D., Steduto, P., Hsiao, TC. and Fereres, E. (2012). Refrence manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
Soltani- Mohammadi, A., Kashkouli, H. A., Naderi, A. and Boroomand- Nasab, S. (2011). The effect of all water and salinity stress on yield and yield components of Maize at different growth stages in Ahvaz conditions. Journal of Water Research in Agriculture, 9, 161- 170. (In Farsi)
Steduto, P., Hsiao, T. C., Raes, D. and Ferres, E. (2007). On the conservative behavior of biomass water productivity. Journal of Irrigation Science, 25, 189- 207.
Steduto, P., Hsiao, T. C., Raes, D. and Ferres, E. (2009). AquaCrop- the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Journal of Agronomy, 101, 426- 437.
Tishehzan, P. (2011). Investigate the root zone salinity changes under the water table condition and the use of mulch in the appeal stage of Palm. Ph. D. dissertation, Shahid Chamran University, Ahvaz, Iran. (In Farsi)
Todorvic, M., Albrizio, R., Zivotic, L., Abi- Saab, M., Stockle, C. and Steduto, P. (2009). Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of Sunflower growth under different water regimes. Journal of Agronomy, 101: 509- 521.
Zhao, Y., Pang, H., Wang, J., Huo, L. and Li, Y. (2014). Effects of straw mulch and buried straw on soil moisture and salinity in relation to Sunflower growth and yield. Journal of Field crop research, 161, 16- 25.