Ahmadi, M., Kamkar, B., Soltani, A., Zeinali, A. and Arabameri, R., (2010). Effect of planting date on length of phenologic spells for Wheat variety and its relation with yield. Researches of crop yields, 7(2),109-122 (in Farsi).
Arvor, D., Jonathan, M., Meirelles, M.S.P., Dubreuil, V., Lecerf, R., (2008). Comparison of Multitemporal MODIS-EVI Smoothing Algorithms and its Contribution to Crop Monitoring. in Geoscience and Remote Sensing Symposium. IGARSS 2008. IEEE International , vol.2, no., pp.II-958-II-961, 7-11 July doi: 10. 1109/ IGARSS. 2008. 4779155
Baskerville, G.L. and P. Emin., (1969). Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 50,514–517.
Bolton, D.B. and Friedl, M.A., (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, Agricultural and Forest Meteorology, 173, 74–84.
Chen, J., Jonsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L., (2004). A simple method for reconstructing a high quality NDVI time series data set based on the Savitzky-Golay filter, Remote Sens. Environ., 91, 332–344, 2004.
Curnel, Y. and Oger, R. (2007). Agrophenology indicators from remote sensing: state of the art. In: ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote sensing support to crop yield forecast and area estimates.
Dash, J., Lankester, T., Hubbard, S. and Curran, P. J. (2008). Signal to noise ratio forMTCI &NDVI time series data. Proceedings of the 2nd MERIS/(A)ATSR User Workshop, Frascati, Italy, 22–26 September 2008.
Davidson, A. and Csillag F., (2003). A comparison of three approaches for predicting C4 species coverof northern mixed grass prairie, Remote Sensing of Environment. 86, 70–82.
De Beurs, K.M. and Henebry, G.M. (2010). Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. In Phenological Research: Methods for Environmental and Climate Change Analysis; Hudson, I.L., Keatley, M.R., Eds.; Springer-Verlag: New York, NY, USA.
Deering, D.W. (1978). Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. Dissertation, Texas A & M University, College Station, TX, 338 pp.
Diepen, C.A.; Wolf, J.; van Keulen, H. (1989). WOFOST: A simulation model of crop production. Soil Use Manage. 1989, 5, 16–24.
Dwyer, L.M., Stewart, D.W., Carrigan, L., Neave, B.L. Ma, P., and Balchin, D. (1999a). A general thermal index for maize. Agronomy Journal. 91, 946-949.
Dwyer, L.M., Stewart, D.W., Carrigan, L., Neave, B.L. Ma, P. and Balchin, D. (1999b). Guidelines for comparisons among different maize maturity rating systems. Agronomy Journal, 91, 946-949.
Hmimina, G., Dufrêne, E., Pontailler, J. Y., Delpierre, N., Aubinet, M., Caquet, B. (2013). Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sensing of Environment, 132,145–158
Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T. and Richardson, A. D. (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 117,307–321.
Jiang, Z., Huete, A.R., Didan, K. and Miura, T., (2008). Development of a two-ban enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845.
Jones, J.W., Tsuji, G.Y., Hoogenboom, G., Hunt, L.A., Thornton, P.K., Wilkens, P.W., Imamura, D.T., Bowen, W.T. and Singh, U. (1998). Decision Support System for Agrotechnology Transfer: DSSAT V3. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G.,Thornton, P., Eds.; Kluwer Academic Publishers: Boston, MA, USA, pp. 157–177
Kamble, B. and Kilic, A., (2013). Hubbard, K. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 5, 1588-1602.
Kroes, J.G., Dam, J.C.V., Groenendijk, P., Hendriks, R.F.A. and Jacobs, C.M.J. (2008). SWAP Version 3.2: Theory Description and User Manual; Alterra Report; Alterra: Wageningen, The Netherlands.
Kumudini S, Andrade F, Boote K, Brown G, Dzotsi K, Edmeades G, Gocken T, Goodwin M, Halter A, Hammer G. (2014). Predicting Maize Phenology: Intercomparison of Functions for Developmental Response to Temperature. Agronomy Journal, 106(6),2087-2097.
Lofton, J., Tubana, B.S., Kanke, Y., Teboh, J., Viator, H. and Dalen, M. (2012). Estimating Sugarcane Yield Potential Using an In-Season Determination of Normalized Difference Vegetative Index. Sensors, 12, 7529-7547.
McMaster, G.S. and Smika, D.E., (1988). Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric. For. Meteorol., 43, 1-18.
Saxton, K.E.; Porterand, M.A.; McMahon, T.A. (1992). Climatic impacts on dryland winter wheat by daily soil water and crop stress simulations. Agr. For. Meteorol., 58, 177–192.
Shen, Y., Di, L., Wu, L., Yu, G., Tang, H., Yu, G. and Shao, Y. (2013). Real-time estimation of corn progress stages using hidden markov models with multisource features. Remote Sens., in review.
Stöckle, C.O., Donatelli, M. and Nelson, R. (2003). Cropsyst, a cropping systems simulation model. Eur. J. Agron., 18, 289–307.
Streck, N. A., LAGO, I., GABRIEL, L.F. and SAMBORANHA, F.K. (2008). Simulating maize phenology as a function of air temperature with a linear and a nonlinear model. Pesquisa Agropecuária Brasileira, 43, 449–455.
Rocha, V.A. and Shaver, G.R., (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes, Agricultural and Forest Meteorology, 149, 1560–1563.
Rondeaux, G., Steven, M., and Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55,95–107.
Roth, G.W., and Yocum, J.O. (1997). Use of hybrid growing degree day ratings for corn in the northeastern USA. Journal of Production Agriculture, 10: 283-288.
Swets D.L., Reed B.C., Rowland J.D. and Marko S.E., (1999). A Weighted Least-squares Approach to Temporal NDVI Smoothing. In: Proceedings Amr. Soc. Photogram. Rem. Sens. 17-21 May, Portland OR., ASPRS, Washington, D.C., pp. 526-536.
Teal R.K., Tubana B.S., Girma K., Freeman K.W., Arnall D.B., Walsh O. and Raun W.R. (2006). In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J.98:1488–1494.
Van Dijk A., Callis S.L., Sakamoto C.M. and Decker W.L. (1985). Smoothing vegetation index profiles: an alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogram. Engin. Rem. Sens., 53, pp. 1059-1067.
Viovy N., Arino O. and Belward A.S. (1992). The best index slope extraction (BISE): a method for reducing noise in NDVI time series. International Journal of remote sensing, 13(8), 1585-1590.
White, K., Pontius, J. and Schaberg, P. (2014). Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148, 97–107.
Wu C., Gonsamo A., Gough C.M., Chen J.M. and Xu S. (2014). Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS, Remote Sensing of Environment, 147, 79–88.
Zhang, X., Friedl, M., Schaaf, M., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C. and Huete, A.R. (2003). A Monitoring vegetation phenology using MODIS. Remote Sens. Environ., 84, 471–475.
Ziaei, S.F., Khalili, A. and Ghahreman, N. (2009). Prediction of autumn Wheat phenology based on weather data in three climates of Iran. Agriculture,11(1), 71-86 (in Farsi).