بررسی تأثیر تغییر اقلیم بر منحنی‌های سختی- مدت- فراوانی خشکسالی حوزه آبریز قره‌سو با استفاده از توابع مفصل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی منابع آب

2 عضو هیئت علمی دانشگاه شهید باهنر کرمان

چکیده

تغییر اقلیم تأثیرات متعددی بر مقدار بارش می­گذارد و گرمایش نیز با شتاب بخشیدن به خشک شدن زمین، منجر به افزایش فراوانی و شدت خشکسالی­ها می­شود که این خود بر منحنی­های سختی- مدت- فراوانی خشکسالی (SDF) مؤثر خواهد بود. هدف از این پژوهش، ارزیابی اثرات تغییر اقلیم بر منحنی­های SDF در حوزه آبریز قره‌سو واقع در استان گلستان در دوره آتی می­باشد. ابتدا متغیرهای بارش و دما با استفاده از سری زمانی میانگین حوزه طی سال­های 2012-1983 و خروجی­های مدل گردش عمومی جو CanESM2 تحت سه سناریو RCP 2.6، RCP 4.5 و RCP 8.5 و مدل ریزمقیاس­نمایی آماری SDSM در دوره 2048-2019 برآورد شدند. پس از آن با استفاده از شاخص شناسایی خشکسالی (RDI) سه‌ماهه و رویکرد تابع مفصل و دوره بازگشت شرطی منحنی­های SDF مربوط به حوزه در دوره پایه و آتی استخراج شدند. نتایج نشان داد که متغیرهای بارش و دمای ماهانه در حوزه، عموماً در دوره آینده تحت سناریوهای مختلف به ترتیب کاهش و افزایش می­یابد و در دوره پایه، دوره بازگشت یک رویداد خشکسالی با میزان سختی 10 و مدت برابر یا کمتر از 6 ماه، 5 سال می­باشد. دوره بازگشت همین رویداد خشکسالی تحت سناریوهای RCP 2.6، RCP 4.5 و RCP 8.5 به ترتیب برابر 21، 17 و 4 سال می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Survey of Climate Change Impact on Drought Severity- Duration- Frequency Curves Using Copulas

چکیده [English]

Climate change has various effects on the quantity of rainfall and warming also is lead to increases in frequency and intensity of droughts by accelerating earth drying up and consequently. It is effective on the curves of severity- duration- frequency of drought (SDF). The purpose of this study is to evaluate the effects of climate change on SDF curves in the future in Qareh su basin located in the Golestan province. First, precipitation and temperature variables were generated using basin-areal average time series from years 1983-2012 and “CanESM2” model outputs as a general circulation model under the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios and “SDSM” model as a statistical downscaling model over the period 2019-2048. Then SDF curves were derived from 3-month Reconnaissance Drought Index (RDI) and Copula approach and conditional return period in the base and future time periods. The results showed that monthly precipitation and temperature for the future time period under different scenarios are generally decreased and increased, respectively and the return period of a drought event with severity equal to 10 with respect to 6-month duration or less, is 5 years in the base period. The return periods of the same event under RCP 2.6, RCP 4.5 and RCP 8.5 are 21, 17 and 4 years, respectively.

کلیدواژه‌ها [English]

  • Golestan province
  • Conditional return period
  • SDSM
  • drought Severity- Duration- Frequency
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G. and Merryfield, W. J. (2011). Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters, 38(5), 1-6.
Asadi Zarch, M. A. Mobin, M. H., Malekinejad, H., Dastorani, M. T., Rezaei Zarchi, S. 2009. Introduce a new index to determine drought severity, duration and its extent on arid regions of Iran. In: 5thNational Seminar on Watershed Management, 22-23 Apr, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (In Farsi)
Bazrafshan, J., Nadi, M. and Ghorbani, Kh. (2015). Comparison of Empirical Copula-Based Joint Deficit Index (JDI) and Multivariate Standardized Precipitation Index (MSPI) for Drought Monitoring in Iran. Water Resources Management, 29(6), 2027-2044.
Farrokhnia, A. and Morid, S. (2008). Analysis of drought severity and duration using Copula functions. In: 4th National Congress on Civil Engineering, 6-8 May, Tehran University, Tehran, Iran. (In Farsi)
Genest, Ch., Rémillard, B., Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2), 199-213.
Ghavidel Rahimi, Y. (2010). Statistical reveal the effect of global warming on the Jolfa annual precipitation anomalies using artificial neural networks. Journal of GeographyandEnvironmental Planning, 21(2), 65-82. (In Farsi)
Golmohammadi, M. and Massah Bavani, A. R. (2011). The Perusal of Climate Change Impact on Drought Intensity and Duration. Journal of Water and Soil, 25(2), 315-326.
Khalili, A. (1997). Integrated water plan of Iran. Meteorological studies, Ministry of power, Iran.
 IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 976pp.
Kao, S. C., Govindaraju, R. S. (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2), 1-19.
Katiraei, P. S., Hojam, S. and Irannejad, P. (2007). Contribution of frequency and intensity variations of daily precipitation in precipitation trend in Iran in 1961-2001 period. Journal of the Earth and Space Physics, 33(1), 67-83. (In Farsi)
Kwak, J., Kim, S., Singh, V. P., Kim, H. S., Kim, D., Hong, S., Lee, K. (2015). Impact of Climate Change on Hydrological Droughts in the Upper Namhan River Basin, Korea. KSCE Journal of Civil Engineering, 19(2), 376-384.
Laio, F., (2004). Cramer-von Mises and Anderson-Darling goodness of fit tests for
extreme value distributions with unknown parameters. Water Resources Research, 40(9), 1-10.
Li, J., Zhang, K., Chen, Y. D., Singh, V. P. (2015). Future joint probability behaviors of precipitation extremes across China: Spatiotemporal patterns and implications for flood and drought hazards. Global and Planetary Change, 124, 107-122.
Moradi, H. R., Sepahband, A. R. and Khazaei, M. (2009). Evaluating meteorological and hydrological drought by modified SPI and SDI (case study: Khorram abad Basin). In: 5thNational Seminar on Watershed Management, 22-23 Apr, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. (In Farsi)
Mosaedi, A. and Ghabaei Sough, M. (2011a). Modification of Reconnaissance Drought Index (RDI) based on relevant probability distribution function in arid and semi-arid regions of Iran. In: The firstNational Conference onAgriculturalMeteorology andWater Management, 22-23 november, Tehran University, Tehran, Iran. (In Farsi)
Mosaedi, A. and Ghabaei Sough, M. (2011b). Modification of Standardized Precipitation Index (SPI) Based on Relevant
Probability Distribution Function. Journal of Water and Soil, 25(5), 1206-1216. (In Farsi)
Nazemi, A. R., Elshorbagy, A. (2012). Application of copula modelling to the performance assessment of reconstructed watersheds. Stochastic Environmental Research and Risk Assessment, 26(2), 189-205.
Nelsen, R. B. 2007. An introduction to copulas (2th ed.). New York: Springer.
Song, S., Singh, V. P. (2010). Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment, 24(3), 425-444.
Rajsekhar, D., Singh, V., Mishra, A. (2014). Hydrologic Drought Atlas for Texas. Journal of Hydrologic Engineering, 19(8), 1-20.
Shiau, J. T. (2006). Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resources Management, 20(5), 795–815.
Shiau, J. T., Modarres, R. (2009). Copula-based drought severity-duration-frequency analysis in Iran. Meteorological Applications, 16(4), 481-489.
Taei Semiromi, S., Moradi, H. R. and Khodagholi, M. (2014). Simulation and prediction some of climatic variables by multiple linear model SDSM and atmospheric general circulation models (case study: Neishabour). Journal of Human & Environment, 12(28), 1-16. (In Farsi)
Wilby, R. L., Dawson, C. W., Murphy, C., Connor, P. O’., Hawkins, E. (2014). The Statistical DownScaling Model − Decision Centric (SDSM-DC): conceptual basis and applications. Climate Research, 61(3), 251-268.
Yevjevich, V. (1967). An objective approach to definitions and investigations of continental Hydrological droughts. hydrology paper, Colorado State University, Fort Collins, CO, (No. 23). (302pp).
Yusof, F., Hui-Mean, F., Suhaila, J. and Yusof, Z. (2013). Characterisation of Drought Properties with Bivariate Copula Analysis. Water Resources Management, 27(12), 4183–4207.