بررسی تغییرات زمانی ضرائب نفوذ آب در خاک در آبیاری جویچه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد آبیاری و زهکشی

2 موسسه تحقیقات فنی و مهندسی کشاورزی

3 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده

شناخت فرآیند نفوذ آب در خاک برای طراحی‌، افزایش راندمان آبیاری، کاهش تلفات آب و مدیریت بهینه مصرف آب ضروری است. هدف از این مطالعه، بررسی تغییرات زمانی ضرائب معادله نفوذ کوستیاکف-لوئیز به عنوان یکی از پرکاربردترین معادلات تجربی نفوذ آب در خاک است. در این مطالعه، 16 نوبت آبیاری متوالی طی یک فصل زراعی ذرت دانه‌ای در 8 آزمایش با استفاده از روش بیلان حجم تحلیل شد. آزمایش‌ها در مزرعه‌ای واقع در مشکین دشت کرج با بافت لومی و به روش آبیاری جویچه‌ای به طول 120 متر انجام شد. نتایج نشان داد به جزء در آبیاری اول، تغییرات زمانی معنی‌داری بین مقادیر متوسط و مقادیر ضرائب معادله نفوذ کوستیاکف-لوئیز در هر نوبت آبیاری در طول فصل زراعی وجود نداشت. به­طوری­که حداکثر خطای محتمل حدود 5% بدست آمد. پارامترهای نفوذ نسبت به تغییرات دبی حساس بوده و تأثیر دبی  بر آن‌ها غیرخطی است. بررسی میزان تأثیر تغییرات دبی ورودی بر پارامترهای نفوذ نیازمند مطالعات تکمیلی است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of temporal variation of soil water infiltration coefficients in furrow irrigation

نویسندگان [English]

  • Ghazaleh Ziaei 1
  • Fariborz Abbasi 2
  • Hosein Babazadeh 3
  • Fereydoon Kaveh 3
1
2
3
چکیده [English]

Recognition of soil water infiltration process is essential for improving irrigation efficiency, decreasing water losses and management of surface runoff. The aim of this research was to evaluate temporal variation of the Kostiakove-Louise infiltration coefficient parameters during a corn growing season. In this research, 16 irrigation events for 8 large scale furrow experiments were analyzed by the volume balance method for evaluating the Kostiakove-Louise infiltration parameters. The length of the experimental furrows used for this study were 120 meters. The results indicated that temporal variation of the Kostiakove-Lewise parameters during the growing season were not meaningful and possible error was less than 5%.

کلیدواژه‌ها [English]

  • Corn
  • Infiltration
  • Kostiakove-Louise
  • Volume balance
Abbasi, F., 2013. Principle of Flow in Surface Irrigation. Iranian National Committee on Irrigation and Drainage (IRNCID). IRAN. (in Farsi).
Austin, N. and. Prendergast J.B., 1997.Use of kinematic wave theory in model irrigation on cracking soil. Irrigation Science, 18(1):1-10.
Benham, B.L., Reddel, D.L. and Marek, T.H., 2000.Performance of three infiltration model under surge irrigation. Irrigation Science, 20:34-43.
Ebrahimian, H., Ghanbarian-Alavijeh, B., Abbasi, F. and Hoorfar, H., 2010.Two-point method for estimating infiltration parameters in furrow and border irrigation and comparison with other methods. J. Water and Soil, 24(4):690-698. (in Farsi).
Elliott, R.L., Walker, W.R. and Skogerboe, G.V. 1982. Field evaluation of furrow infiltration and advance functions. Trans. ASAE, 25(2):396-400.
Elliott, R.L., Walker, W.R. and Skogerboe, G.V. 1983. Infiltration parameters from furrow irrigation advance data. Trans. ASAE, 26(6):1726-1731.
Emdad, M.M., Shojaeefar, M. and Fardad, H., 2008. Time affection of infiltration in furrow irrigation management. J. Soil Research, 24(2).(in Farsi).
Gates, K. and Clyma, W., 1984. Designing furrow irrigation system for improved seasonal performance. Trans. ASAE, 26(6):1817-1824.
Green, W.A. and Ampt, G.A., 1911. Studies on soil physics I. the flow of air and water through soils. J. Agric Sci., 4:1-24.
Horton R.E., 1940. An approach towards a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. Proc., 5:399-417.
Jaynes, D.B. and Hunsaker, D.J., 1989. Spatial and temporal variability of water content and infiltration on a flood irrigated field. Trans ASAE, 32:1229-1238.
Karami, A., Homaii, M., Baybordi, M. and Mahmodian Shooshtari, M. 2013.Quantification water infiltration in soil parameters by scaling. J. Water Research, 6(11): 65-73. (in Farsi).
Kostiakov, A.V., 1932. On dynamic of the coefficient of water percolation in soils and on the necessity for studying it from dynamics point of view for purposes of a melioration. Transactions of the Sixth Commission of International Society of Soil Science, Part A, 17-21.
Machiwal, D., Madan, K.J. and Mal, B.C., 2006. Modeling infiltration and quantifying spatial soil variability in wasteland of Khoragpur, India. BioSystem Engineering, 95(4): 569-582.
Mcclymont, D. and Raine, R., 1996. The predication of furrow irrigation performance using the surface irrigation model SIRMON. Australian Solutions, Adelaide Convention and Exhibition Centre South Australia, 14-16 May 1996: 1-10.
Medina, J. and Martin, D., 1998. Infiltration model for furrow irrigation. J. Irrig. Drain. Eng., 124(2): 73-80.
Mezencv, V.J., 1984. Theory of formation of the surface runoff. Meteorologia Igridrologia, 3:33-46.
Michael, A.M., 1982. Irrigation: Theory and Practice. Orient Longman, New Delhi.
Milhole, J.C., Pirol, M. and Benali, M., 1999.A furrow irrigation model to improve irrigation practices in the Ghrab valley of Marocco. Agric. Water Manage., 42(1):65-80.
Philip, J.R., 1957. The theory of infiltration 4.Sorptivity and algebraic infiltration equations. Soil Sci., 84:257-264.
Playán, E., Rodriguez, J. A., Garcia-Navarro, P.  2004. Simulation model for level furrows. I: Analysis of field experiments.  J. Irrig. Drain. Eng., 130 (2), 106–112.
Rasoulzadeh, A. and Sepaskhah, A.R., 2003. Scaled infiltration equation for furrow irrigation. BioSystem Eng., 86:375-383.
Raine, R., 1999. Research, development and extention in irrigation. National Center for Engineering in Agriculture. NCEA Publication, 179743/2:1-12.
Rodriguez, J.A. 2003. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agric. Water Manage., 60, 227–239.
Tabatabai, S.H., Neyshabouri, M.R., Fardad, H. and Liaghat, A.M., 2004. Evaluation of time and spatial variability of cross sections coefficient in furrow irrigation. J. Agriculture Science and Natural Resource of Gorgan. 11(2), 171-179. (in Farsi).
Zapata, N and Playan, E., 2000. Elevation and infiltration in a level basin I. Irrig. Sci., 19 (4), 155-164.