استفاده از خصوصیات منحنی تراکم خاک برای تخمین رطوبت خاک با استفاده از مدل ون‌گنوختن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بو علی سینا همدان

2 استادیار گروه خاکشناسی دانشکده کشاورزی دانشگاه بو علی سینا همدان

3 کارشناسی ارشد فیزیک و حفاظت خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

4 دانش آموخته کارشناسی ارشد فیزیک و حفاظت خاک دانشگاه گیلان

5 کارشناسی ارشد فیزیک و حفاظت خاک، دانشگاه بو علی سینا همدان

6 دانشجوی کارشناسی ارشد مهندسی آب، دانشگاه بو علی سینا همدان

چکیده

مدل ون‌گنوختن معروفترین و پرکاربردترین مدل منحنی نگهداشت آب خاک است. پارامترهای این مدل توسط تخمینگر‌های مختلف از جمله بافت خاک تخمین زده شده‌اند. اما تا کنون از خصوصیات منحنی تراکم جهت تخمین پارامترهای مدل ون‌گنوختن و نهایتا رطوبت خاک استفاده نشده است. منحنی تراکم یکی از خصوصیات مکانیکی خاک است و رابطه بین تنش- کرنش با مدول الاستیسته در خاک را نشان می‌دهد. دو منحنی نگهداشت آب خاک و منحنی تراکم دارای شباهت‌هایی هستند. اندازه‌گیری منحنی نگهداشت آب در خاک زمان‌بر و هزینه‌بر است در صورتی که اندازه‌گیری منحنی تراکم ارزان و سریع است. برای انجام این تحقیق 150 نمونه خاک از پنج استان ایران به صورت دست خورده و دست نخورده برداشت شد. نگهداشت آب در خاک در دوازده مکش اندازه‌گیری شد. منحنی تراکم با استفاده از دستگاه تک محوری به صورت نمونه محصور بدست آمد. در این طرح از شش سطح تخمینگر که شامل خصوصیات تراکمی و ضرایب معادلاتی هستند برای تخمین رطوبت خاک استفاده شد. استفاده از خصوصیات منحنی تراکم موجب بهبود تخمین منحنی نگهداشت آب خاک در هر دو مرحله اموزش و ازمون مدل گردید. سطوح دوم و ششم به‌ترتیب با تخمین‌گرهای تنش پیش تراکمی-شاخص تراکم- شاخص تورم و پارامترهای معادله تنش-پوکی (‌به‌صورت غیر مستقیم)، علاوه بر خصوصیات پایه، نسبت به سایر سطوح دقت تخمین بالاتری داشتند (IRMS=0.092). علت برتری این تخمینگر‌ها را می‌توان همبستگی آن‌ها با ضرایب مدل ون‌گنوختن و مفهوم مکانیکی تخمینگر‌ها دانست. همچنین تشابه شکل دو منحنی با هم نیز یکی از علل تخمین مناسب رطوبت بود.

کلیدواژه‌ها


عنوان مقاله [English]

Using compression curve characteristics to estimate water content by the van Genuchten model

نویسندگان [English]

  • Eisa Ebrahimi 1
  • Hosein Bayat 2
  • Saeedeh sadeghi 3
  • mahbobeh fallah 4
  • Mohammad Jorreh 5
  • Mohammad zanganeh 6
1 Bu Ali Sina Hamedan University
2
3 MSc in physics and soil conservation Gorgan University of Agricultural Sciences and Natural
4
5 MSc in soil physics and conservation at Bu Ali Sina Hamedan University
6 MSc in engineering water at Bu Ali Sina Hamedan University
چکیده [English]

van Genuchten model is a well-known and most widely used model for the estimation of soil water retention curve. The parameters of this model have been estimated by different estimators such as soil texture. But so far the properties of compaction curve have not been used to estimate the parameters of van Genuchten model. Compaction curve is one of the soil mechanical properties and shows the relationship between the stress-strain with the elasticity modulus. Soil water retention and compaction curves have similarities. Measurement of soil water retention curve is time-consuming and costly while the measurement of compaction curve is cheap and needs less time. For this study, 150 soil samples (distributed and undistributed) were collected from five provinces of Iran. Soil water retention was measured at 12 suctions and the compaction curve was obtained using uniaxial apparatus in the confined sample. In this research, 6 levels of estimators including compaction characteristics and equations coefficients were used to estimate water content. In general, results showed that the use of compaction curve was useful to estimate the soil water retention curve. The second and sixth levels with the estimators of Pc-Cc-Cs and parameters of stress-strain model (indirectly), respectively along with basic soil properties had higher estimation accuracy compared to other estimator levels. The reason for the excellence of these estimators can be due to their correlation with van Genuchten model parameters and mechanical concept of estimators. Moreover, the similarity between the two curves was one of the reasons for the appropriate estimation of soil water retention curve.

کلیدواژه‌ها [English]

  • Precompression Stress
  • model
  • Soil Water Retention Curve
  • Compression Curve
Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans Automa Contr. 19:716-723.
Alexandrou, A. and Earl, R. (1995). The development of techniques for assessing compactibility of field soils. A Thesis Submitted for the Degree of Doctor of Philosophy Cranfield University Silsoe College
Barbosa, O. A., Taboada, M. A., Rodrigues, M. B., and Cosentino, D. J. (1997). Regeneraion de la etructura en differentes fases degradacion de un suelo franco limoso de la pampa Ondulada. Ciencia del suelo, 15, 81-86.
Baumgartl, Th., and Kock, B. (2004). Modeling Volume Change and Mechanical Properties with Hydraulic Models. Soil Science Society of American Journal, 68, 57–65.
Bayat, H., Ebrahimi, I., Rastgo, M., Zare abyaneh, H., Davatghar, N. (2013). Fitting Different Soil Water Characteristic Curve Models on the Experimental Data of Various Textural Classes of Guilan Province Soils. Water and Soil Science, 23 (3), 151-167. (In Farsi)
Casagrande, A. (1936). The determination of preconsolidation load and its practical significance. International Conference on soil Mechanics and Foundation Engineering, 22-26 June, Cambridge, MA, 3: 60-64.
Cavalieri, K. M., Arvidsson, V. J., Silva, A.P., and Kellr, T. (2008). Determination of precompression stress form uniaxial compression test. Soil and Tillage Research, 31, 277-282.
Dexter, A. R., and Bird, N. R. A. (2001). Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil and Tillage Research, 57, 203-212.
Dias Junior, M. S., and Pierce, F. J. (1995). A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technology, 8, 139-151.
Eisa Ebrahimi, E., Bayat, H., Neyshaburi, M. R., and Zare abyaneh, H., (2013). Investigating prediction capability of different soil water retention curve models using artificial neural networks. Archives of Agronomy and Soil Science. 859-879.
Fooladmand, H. R., and Hadipour, S. (2011). Parametric pedotransfer functions of a simple linear scale model for soil moisture retention curve. African Journal Of Agriculture Research, 6(17), 4000-1004.
Fritton, D. D. (2001). An Improved Empirical Equation for Uniaxial Soil Compression for a Wide Range of Applied Stresses recompress. Soil Science Society of American Journal, 678–684.
Gee, G.W., and Or, D. (2002). Particle-size and analysis. In: Warren, A.D. (Ed.), Methods of soil analysis. Part 4. Physical Methods. Madison. WI, USA: Soil Science Society of American Journal, 255-295.
Ghanbarian Alavijeh, B., Liaghat, A., Huang, G. H., and Van Genuchten, M. T. (2010). Estimation of the van Genuchten soil water retention properties from soil textural data. Pedosphere, 20(4), 456-465.
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life continecies. Philosophical.Transactions of the Royal Society of London, 115, 513-585.
Gregory, A. S., Whalley, W. R., Watts, C. W., Bird, N. R. A., Hallett, P. D., and Whitmore, A. P. (2006). Calculation of the compression index and precompression stress from soil compression test data. Soil and Tillage Research, 89, 45–57.
Grossman, R. B., and Reinsch, T. G. (2002). In: Dane, J.H. Clarke, T.G (Ed.),Methods of soil analysis part5. Physical Methods. Madison. WI, USA: Soil Science Society of American Journal, 255-295.
Haghshenas, M., Beigi Harchegani, H. (2010). The effect of Mianeh zeolite on water retention and water retention models in two soil textures. Iran Water research Journal, 4 (6), 35-42. (In Farsi) 
Hall, D. G., Reeve, M. J., Thomasson, A. J., and Wright, V. F. (1977). Water retention, porosity and density of field soils. Soil Survey of England and Wales. Harpenden, Technical Monograph, 9, 75.
Hodentt, M. G., and Tomasella J. (2002). Water retention parameters for temperate and tropical soils: a new water retention pedotransfer funections developed for tropical soils. Geoderma, 108, 155-180.
Imhoff, S., Dasilva, A. P., and Fallow, D. (2004). Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox. Soil Science Society of American Journal, 68, 17–24.
Larson, W. E., Blacke, G. R., Allmaras, R. R., Voorhess, W. B., and Gupta, S. C. (Eds), Mechanics and Related Processes in structured Agricultural Soils. Proceeding of 2th Workshop, NATO ASI Series, Kluwer, Dordrecht.
Jana, R. B., Mohanty, B. P., and Springer, E. P. (2007). Multiscale pedotransfer functions for soil water retention. Vadose Zone, 6, 868-878.
Jose, B. T., Sridharan, A., and Abraham, B. M. (1989). Log-log method for determination of preconsolidation pressure. Geotechnical Testing Journal, 12, 230-237.
Keller, T. M., Lamande, P. S., and Dexter A. R. (2011). Analysis of soil compression curves from uniaxial confined compression tests. Geoderma, 163, 13–23.
Keller, T., and Arvidsson, J. (2007). Compressive properties of some Swedish and Danish structured agricultural soils measured in uniaxial compression tests. European Journal of Soil Science, 58, 1373–1381.
Khodaverdiloo, H., Homaee, M., van Genuchten, M. Th., and Ghorbani Dashtaki, Sh. (2011). Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399, 93–99.
Koolen, A. J. (1974). A method for soil compactibility determination. Journal of Agricultural Engineering Research, 19, 271-278.
Koolen, A. J., and Kuipers, H. (1989). Soil deformation under compressive force. PP: 37-52.
Larson, W. E., Gupta, S. C., and Useche, R. A. (1980). Compression of agricultural soils from eight soil orders. Soil Science Society of American Journal, 44, 450–457.
Lebert, M., and Horn, R. (1991). A method to predict the mechanical strength of agricultural soils. Soil and Tillage Research, 19, 275–286.
Leij, F. J., Alves, W. J., van Genuchten, M. Th., and Williams, J. R., (1996). The unsoda unsaturated soil hydraulic database, version 1.0. EPA report EPA/600/R-96/095, EPA National Risk Management Laboratory, G-72, Cincinnati, OH, USA. (http:// www.epa.gov/ada/models.html).
Leij, F. J., Ghezzehei, T. A., and Or, D. (2002). Modeling the dynamics of the soil pore-size distribution. Soil and Tillage Research, 6, 61–78.
Medina, H., Tarawally, M., delValle, A., and Ruiz, M. E. (2002). Estimating soil water retention curve in rhodic ferralsols from basic soil data. Geoderma, 108, 277– 285
Merdun, H. (2006). Pedotransfer functions for point and parametric estimations of soil water retention curve. Plant Soil and Environment, 52 (7), 321–327.
Minasny, B., Hopmans J. W., Harter, T., Eching, S. O., Tuli, A., and Denton M. A. (2004). Neural Networks Prediction of Soil Hydraulic Functions for Alluvial Soils Using Multistep Outflow Data. Soil Science Society of American Journal, 68,417–429.
Minasny, B., McBratney, A. B., and Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma, 93, 225–253.
Nagaraj, T., and Murty, B. R. S. (1985). Prediction of the preconsolidation pressure and recompression index of soils. Journal Geotechnical Testing, 8(4), 199-202.
Nemes, A., and Rawls, W. J., (2006). Evaluation of different representations of the particle-size distribution to predict soil water retention. Geoderma, 132, 47–58.
Or, D., and Jon, M. W. (2002). Soil Water Content and Water Potential Relationships. In: Warrick, A. W. Soil Physics Companion, CRC Press, 73-77.
Pachepsky, Y. A., Timlin, D., and Varallyaay, G. (1996). Artificial neural networks to estimate soil water retention form easily measurable data. Soil Science Society of American Journal, 60, 727-733.
Pal, D. K., Bhattacharya, T., Ray, S. K., and Bhuse S. R. (2003). Developing a model on the formation and resilence of naturally degraded balck soils of the peninsular india as a decision support system for better land use planning. Unpublished report, NBSS and LUP. Nagpur, India.
Patil, N. G., Pal, D. K., Mandal, C., and Mandal, D. K. (2012). Soil water retention characteristics of vertisoils and pedotransfer functions based on near neighbor and neural networks approach to estimateAWC. Journal of arrigation and drainage engineering, 138(2), 1-10.
Rajkai, K., Kabo, S., and van Genuchten, M. Th., (2004). Estimating the water retention curve from soil properties: comparison of linear, nonlinear and concomitant variable methods. Soil and Tillage Research, 145–152.
Rawls, W. J., Brakensiek, D. L., and Saxton, K. E., (1982). Estimation of soil water properties. Trans. ASAE 25, 1316-1320.
Salfors, G. (1975). Preconsolidation pressure of soft high plastic clays. Ph.D. Thesis, Department of Geotechnical Engineering, Gothenburg, Germany.
Schaap, M. G., and Bouten, W. (1996). Modeling water retention curves of sandy soils using neural netwroks. Water Resources Research, 32, 3033-3040.
Schaap M. G., and Leij F. J., (1998). Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 47(1): 37-42.
Schaap M. G., Leij F. J., and van Genuchten, M. Th. (2001). Rosetta a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163-176.
Scheinost, A. C., Sinowis, W., and Auerswald, K. (1997). Regionlaization of soil water retention curves in highly variable soilscape, I. Developing a new pedotransfer function. Geoderma, 78, 129-143.
Schmertmann, J. H. (1955). The undisturbed consolidation behavior of clay. Journal of Transportation Engineering, American Society of Civil Engineers, 120, 1201-1233.
Seki, K. (2007). SWRC fit a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrology and Earth System Sciences, 4 (1), 407–437.
Seuntjens, P. (2000). Reactive Solute Transport in Heterogeneous Porous Medium: Cadmium Leaching in Acid Sandy Soils. Ph.D. Thesis, University of Antwerp, Belgium.
Sharma, S. K., Mohanty, B. P., and Zhu, J. (2006). Including topography and vegetation attributes for developing pedotransfer functions. Soil Science Society of American Journal, 57, 300-306.
Siller, W.S., Fredlund, D.G., and zakerzadeh, N. (2001). Mathematical attribiutes of some soil water characteristic curve models. Geotechnical and Geological Engineering, 19,243-283.
Simuenek, J., van Genuchten. M. Th., Gribb. M. M., and Hopmans. J. W. (1998). Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil and Tillage Research, 27-36.
Simuenek, J., Angulo-Jaramillo, R., Schaap, M. G., Vandervaere. J. P., and van Genuchten. M. Th. (1998). Using an inverse method to estimate the hydraulic properties of crusted soils from tension-disc infiltrometer data. Geoderma, 86, 61–81
Tietje, O., and Tapkenhinrichs, M. M. (1993). Evaluation of pedotransfer functions. Soil Sci. Soc. Am. J. 57:1088-1095.
Tomasella, J., Pachepsky, Y. A., Crestana, S., and Rawls, W. J. (2003). Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of American Journal, 67, 1085–1092.
Van Genuchten, M. Th. (1980). A closed form equation predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of American Journal, 44, 892-898.
Vereecken, H., Meas, J., Feyen, J., and Darius, P. (1989). Estimating unsaturated soil moisture retention characterictics from texture, bulk density and carbon content. Soil Science, 148, 389-403.
Vogel, T., van Genuchten, M. Th., and Cislerova, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources, 24, 133-144.
Vossbrinke, J., and Horn, R. (2004). Modernforesty vehicles and their impact on soil physical properties. European Journal of forest Research, 123, 259-267.
Wosten, j. H. M., and Finke, P. A. (1995). Comparison of calss and continuous pedotransfer function to generate soil hydraulic characteristics. Geoderma, 66, 227-237.