ارزیابی روشهای برآورد رطوبت ظرفیت زراعی در خاک های استان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه شهید چمران

2 استاد دانشگاه

چکیده

این تحقیق با هدف ارزیابی عملکرد روشهای مرسوم برآورد رطوبت ظرفیت زراعی جهت معرفی تابع انتقالی مناسب خاکهای منطقه استان خوزستان در شرایط آزمایشگاهی و مزرعه انجام پذیرفت. به منظور رصد وضعیت رطوبتی خاکها در هر دو مدل فیزیکی و مزرعه آزمایشی اقدام به کارگذاری حسگرهای دفنی دستگاه انعکاس سنجی حوزه زمانی (TDR) در اعماق مختلف و انجام آبیاری قطره ای از یک منبع نقطه ای- سطحی با دبی 4 لیتر در ساعت گردید. سپس، ویژگی های فیزیکی خاک همراه با مقادیر رطوبت در مکش های معین برای تعیین پارامترهای هیدرولیکی مدل رطوبتی ون گنوختن- معلم به کمک نرم افزارRETC اندازه گیری شد. نتایج این پژوهش در ارزیابی عملکرد چندین تابع انتقالی نقطه ای معروف نشان داد که مدلهای نیمه تجربی متکی بر اصول فیزیکی که در سطح مزرعه مورد آزمایش قرار گرفته اند می تواند جایگزین مناسبی برای روشهای سنتی تخمین میزان رطوبت ظرفیت نگهداری آب در خاک باشد. به طوری که، تابع انتقالی Twarakavi et al. (2009) با آماره های (1/3%) NRMSE و (51/0%) SE توانست رطوبت ظرفیت زراعی را با دقت خوبی نسبت به روش شبکه عصبی Rosetta (2001) با مقادیر (2/5%) NRMSE و (71/0%) SE یا معادله Dexter (2004) با مقادیر (7/9%) NRMSE و (75/1%) SE برآورد نماید. هر چند، تفاوتی در کارایی مدل (ME) برای هر سه تابع انتقالی ملاحظه نگردید. بر اساس نتایج ارزیابی این توابع انتقالی با استفاده از آنالیز واریانس یک طرفه در سطح معنی داری 5 درصد به وضوح مشاهده گردید اثرات منفی میزان شن و تراکم خاک بر مقادیر رطوبت ظرفیت زراعی قابل توجه است. بر عکس، میزان رس و سیلت در سطح معنی داری 5 درصد دارای تأثیر مثبتی بر مقادیر رطوبت ظرفیت زراعی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Estimation Methods for Water Field Capacity in Soils of Khuzestan Province

نویسندگان [English]

  • omid sheikhesmaeili 1
  • Hadi Moazed 2
  • AbdAli Naseri 2
1
2
چکیده [English]

Indirect prediction of hydraulic characteristics of vadose zone is based on their readily available properties in the form of Pedo Transfer functions (PTFs), as a fast and low-cost solution has been widely practiced in irrigation and drainage problems. These studies was aimed at assessing the performance of the conventional methods of estimating soil moisture content at their field capacity (θfc) and introduce the appropriate PTF under laboratory and field conditions in Khuzestan province soils. The buried probes of the Time Domain Reflectometry device (TDR) were inserted at various depths to monitor soil moisture conditions in either of the physical model or experimental field under surface-point source drip irrigation with a discharge rate of 4 lph. Then, the physical soil properties and soil water contents at their specific matric potentials were assessed to determine the hydraulic parameters of Van Genuchten- Mualem (1980) model Throughwith the RETC program. The results of the research to evaluate the performance of several well-known Point-PTFs indicated that the quasi-empirical models as based upon physical principles can be a proper alternative to traditional methods for estimating θfc on the condition of having been tested on the field. So that, the PTF of Twarakavi et al. (2009) with indices of NRMSE (3.1%) and SE (0.51%) could closely predict θfc more accurately than either the Rosetta (2001) artificial neural network approach which presented the values of NRMSE (5.2%) and SE (0.71%), or the Dexter (2004) equation with the values of NRMSE (9.7%) and SE (1.75%). However, there were no differences observed in the indicator of Model Efficiency (ME) for each of the three PTFs. Based on the assessment rresults of these PTFs, the negative effects of soil compaction and the level of sand on the θfc were clearly shown using one-way ANOVA (p < 0.05). On the contrary, the levels of clay and silt exerted positive significant (p<0.05) increasing effects on  θfc .

کلیدواژه‌ها [English]

  • Pedotransfer Function
  • Quasi-Empirical Model
  • Soil moisture curve
Baker, L. and Ellison, D. (2008). Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144(1-2), 212-224.
Borgesen, C. D. and Schaap, M. G. (2005). Point and parameter pedotransfer functions for water retention predictions for Danish soils. Geoderma, 127, 154-167.
Bouma, J. (1990). Using morphometric expressions for macropores to improve soil physical analyses of field soils. Geoderma, 46, 3-13.
Briggs, L. J. and McLane, J. W. (1990). Moisture equivalent determinations and their application. In: Proceedings of American Society of Agronomy, 2, 138-147.
Calciu, I., Simota, C., Vizitiu, O. and Pănoiu, I. (2011). Modelling of soil water retention properties for soil physical quality assessment. Research Journal of Agricultural Science, 43(3), 35-43.
Cazemier, D. R., Lagacherie, P. and Clouaire, R. M. (2001). A possibility theory approach for estimating available water capacity from imprecise Information contained in soil data bases. Geoderma, 103(1-2), 113-132.
Cong, Z. T., Lu, H. F. and Ni, G. H. (2014). A simplified dynamic method for field capacity estimation and its parameter analysis. Water Science and Engineering, 7(4), 351-362.
 Cosby, B. J., Hornberger, G. M., Clapp, R. B. and Ginn, T. R. (1984). A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20 (6), 682-690.
Dexter, A. R. (2004). Soil physical quality. Part I: Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120, 201-214.
Epebinue, O. and Nwadialo, B. (1994). Predicting soil water availability from texture and organic matter content for Nigerian soils. Communications in Soil Science and Plant Analysis, 24, 633-640.
Hall, D. G., Reeve, M. J., Tomasson, A. J. and Wright, V. F. (1977). Water retention, porosity and density of field soils. Technical Monograph No. 9. Soil Survey of England and Wales, Harpenden.
Hart, G. L. and Lowery, G. (1998). Measuring instantaneous solute flux and loading with time domain reflectometry. Soil Science Society American Journal, 62, 23-35.
Hillel, D. (1998). Environmental soil physics. Academic Press, San Diego, CA.
Klute, A. (1986). Methods of Soil Analysis. Part I: Physical and mineralogical properties (2th ed.). Agronomy, vol. 9, American Society of Agronomy and Soil Science of America, Madison, WI.
McKenzie, N. J. and MacLeod, D. A. (1989). Relationships between soil morphology and soil properties relevant to irrigated and dryland agriculture. Australia Journal of Soil Resources, 27, 235-258.
Merdun, H., Cinar, O., Meral, R. and Apan, M. (2006). Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Resources, 90, 108-116.
Meyer, P. D. and Gee, G. (1999). Flux-based estimation of field capacity, Journal of Geotechnical and Geoenvironmental Engineering, 125(7),  595-599.
Minasny, B., McBratney, A. B. and Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93, 225-253.
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 513-522.
Nachabe, M. H. (1998). Refining the definition of field capacity in the literature. Journal of Irrigation and Drainage Engineering, 124(4), 230-232.
Novák, V. and Havrila, J. (2006). Method to estimate the critical soil water content of limited availability for plants. Biologia, Bratislava, 61/Suppl. 19, 289-293.
Obiero, J. P. O., Gumbe, O. L., Omuto, C. T., Hassan, M. A. and Agullo, J. O. (2013). Development of Pedotransfer Functions for Saturated Hydraulic Conductivity. Open Journal of Modern Hydrology, 3, 154-164.
Pachepsky, Ya. A. and Rawls, W. J. (2004). Development of pedotransfer functions in soil hydrology, Developments in Soil Science. vol. 30. Elsevier, Amsterdam.
Raghavendra, B. J., Mohanty, B. P. and Springer, E. P. (2007). Multiscale pedotransfer function for soil water retention. Vadose Zone, 6, 868-878.
Ratliff, L. F., Ritchie, J. T. and D. K. Cassel. (1983). Field-measured limits of soil water availability as related to laboratory-measured properties. Soil Science Society American Journal, 47, 770-775.
Rawls, W. J. and Brakensiek, D. L. (1985). Prediction of soil water properties for hydrologic modeling. In: Jones, E., Ward, T.J. (Eds.), Watershed Manage, Eighties., Proceedings of the Symposium of ASCE, Denver, CO, New York.
Robbins, C. W. and Wiegand, C. L. (1990). Field and laboratory measurements. In Tanji, K. K. Ed. Agricultural Salinity Assessment and Management. ASCE, New York, NY. 201-219.
Romano, N. and Santini, A. (2002). Field, in Methods of Soil Analysis. Part 4, Physical Methods, Soil Science Society American Book Series. (vol. 5). Edited by Dane, J. H. and Topp, G. C. (pp. 721-738). Madison, Wisconsin. USA.
Saxton, K. E. and Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society American Journal, 70, 1569–1578.
Schaap, M. G., Leij, F. J. and Van Genuchten, M. Th. (2001). ROSETTA: A computer program forestimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176.
Schaap, M. G., Nemes, A., and Van Genuchten, M. Th. (2004). Comparison of models for indirect estimation of water retention and available water in surface soils. Vadose Zone, 3, 1455–1463.
Simunek, J., Van Genuchten, M. Th. and Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 3.0, HYDRUS Software Series 1. Department of Environmental Sciences. University of California Riverside. Riverside. CA. 270p.
Sy, N. L. (2006). Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrology Science, 51(1), 3-20.
Teixeira, W. G., Ceddia, M. B., Ottoni, M. V. and  Donnagema, G. K. (eds.). (2014). Application of Soil Physics in Environmental Analyses: Measuring, Modelling and Data Integration. Springer Press.
Tessier, D., Bigorre, F. and Bruand, A. (1999). La capacité d’échange : outil de prévision des propriétés physiques des sols. Comptes Rendus de l'Academie d'Agriculture de France, 85, 37-46.
Twarakavi, N. K. C., Simunek, J. and Schaap, M. (2009). Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Science Society American Journal, 73, 1443-1452.
Van Genuchten, M. Th. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society American Journal, 44, 892-898.
Van Genuchten, M. T., Leij, F. J. and Yates, S. R. (1991). The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils. EPA Report, 600/2-91/065, USA Salinity Laboratory, USDA.
Veihmeyer, F. J. and Hendrickson, A. H. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32, 181-193.
Vereecken, H., Maes, J., Feyen, J. and Darius, P. (1989). Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Science, 148, 389-403.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G. and van Genuchten, M. Th. (2010). Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review. Vadose Zone, 9, 795-820.
Wösten, J. H. M., Lilly, A., Nemes, A. and LeBas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169-185.