عملکرد توابع انتقالی طیفی پارامتریک و نقطه‌ای برای برآورد منحنی مشخصه رطوبتی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه خاک‌شناسی دانشکدة کشاورزی دانشگاه تربیت‌مدرس تهران

2 استاد گروه خاک‌شناسی دانشکدة کشاورزی دانشگاه تربیت‌مدرس تهران

3 استادیار پژوهشکدة حفاظت خاک و آبخیزداری تهران

چکیده

اندازه‌گیری مستقیم ویژگی‏های هیدرولیکی خاک معمولاً هزینه‏بر و وقت‏گیر است. تلاش‏ فراوانی صورت گرفته تا بتوان از طریق توابع انتقالی خاک (PTFs) و به کمک اطلاعات زودیافت به ویژگی‏های هیدرولیکی خاک دست یافت. هدف این پژوهش ارزیابی عملکرد پارامتریک و نقطه‏ای توابع انتقالی طیفی (STFs) و PTFها در برآورد پارامترهای مدل‏های منحنی رطوبتی ون‏گنوختن و بروکز‌ـ کوری بود. همچنین، به ‏منظور مقایسة کارایی متغیرهای طیفی و متغیرهای مبنایی خاک، عملکرد توابع انتقالی طیفی و توابع انتقالی خاک‏های منطقه نسبت به مهم‌ترین توابع انتقالی برخی خاک‏های جهان بررسی شد. بدین منظور، تعداد 174 نمونه خاک گرد‏آوری و منحنی‏های طیفی آن‏ها در گسترة 350 تا 2500 نانومتر با استفاده از دستگاه اسپکترورادیومتر زمینی اندازه‏گیری شد. برخی ویژگی‏های فیزیکی خاک همراه مقادیر رطوبت در پتانسیل‏های ماتریک معین اندازه‏گیری و به روش حداقل مربعات خطا و پارامترهای مدل‏های رطوبتی ون‏گنوختن و بروکز‌ـ کوری محاسبه شد. با استفاده از روش رگرسیون مرحله‏ای چندگانه، توابع انتقالی خاک و توابع انتقالی طیفی پارامتریک و نقطه‏ای اشتقاق یافت. نتایج نشان داد STFs و PTFs خاک‏های منطقه در هر دو رویکرد نقطه‏ای و پارامتریک نسبت به PTFsهای دیگر مناطق جهان (متوسط RMSR برابر 100/0)، برای پیش‏بینی نگه‌داشت آب در خاک، دقت بیشتری (متوسط RMSR برابر 029/0) دارند. دقت برآورد رطوبت خاک توسط مدل ون‏گنوختن (متوسط RMSR برابر 034/0) نسبت به مدل بروکز‌ـ کوری (متوسط RMSR برابر 041/0) بیشتر بود. به‏ طور کلی، STF و PTFهای اشتقاق‌یافته دقت تقریباً برابری داشتند؛ با این تفاوت که در مکش‏های متوسط و زیاد STFها برآوردی بهتر ارائه کردند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Point and Parametric Spectral Transfer Functions for a Prediction of Soil Water Characteristics

نویسندگان [English]

  • Ebrahim Babaeian 1
  • Mehdi Homaee 2
  • Ali Akbar Norouzi 3
1 PhD Student, Department of Soil Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
2 Professor, Department of Soil Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
3 Assistant Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), Tehran, Iran
چکیده [English]

Direct measurement of soil hydraulic properties is usually expensive and time consuming. Several attempets have been made to establish PedoTransfer Functions (PTFs), that use readily available soil data, to provide soil hydraulic properties. The objective of the present study was to evaluate point and parametric Spectral Transfer Functions (STFs) as well as PTFs to estimate van Genuchten (vG) and Brooks-Corey (BC) parameters needed for predicting soil water characteristics’ curve. The derived STFs and PTFs were further evaluated with a number of available PTFs to find out if spectral variables can effectively improve the accuracy of soil water retention predictions. Consiquently, a number of 174 soil samples were collected and used to measure the spectral reflectance curves in visible, near-infrared and shortwave-infrared range, using a handheld spectroradiometer. Some physical soil properties and soil water contents at their specific matric potentials were recorded. Using a non-linear least square optimization method, the vG and BC parameters were then calculated. Stepwise multiple linear regression statistics was employed to derive point and parametric STFs and PTFs. The results indicated that the derived point and parametric STFs and PTFs are of higher accuracy (with mean RMSR of 0.029 cm3 cm-3) in predicting soil water retention than the published PTFs (with mean RMSR of 0.100 cm3 cm-3). Furtheremore, vG model was found to more accurately predict soil water content (mean RMSR of to 0.034 cm3 cm-3) than BC model (mean RMSR of 0.041 cm3 cm-3). The overall findings reveal that the derived STFs and PTFs provide almost similar results, but the STFs performance is somewhat more accurate at mid and high metric potentials.

کلیدواژه‌ها [English]

  • Soil spectral reflectance
  • Spectral transfer function
  • peotransfer functions
Al Majou, H., Bruand, A., Duval, O., Le Bas, C., and Vautier, A. (2008). Prediction of soil water retention properties after stratufication by combining texture, bulk density and the type of horizon. Soil Use and Management, 24,383–391.
Babaeian, E., Homaee, M., and Norouzi, A. A. (2012). Deriving and validating point spectrotransfer functions in Vis-NIR-SWIR range to estimate soil water retention. Journal of Water and Soil Conservation Research, 1(4), 41-27. (In Farsi)
Brooks, R. H. and Corey, A. T. (1964). Hydraulic properties of porous media, Hydrology paper no. 3. Colorado State University, Fort Collins, CO.
Campbell, G. S. and Shiozawa, S. (1992). Prediction of hydraulic properties of soils using particle size distribution and bulk density. p. 317–328. In M.Th. van Genuchten et al. (ed.). Indirect methods for estimating the hydraulic properties of unsaturated soils. U.S. Salinity Lab., Riverside, CA.
Cecillon, L. C. Barthesb, B. G. Gomez, C., Ertlen, D., Genot, V., Hedde, M., Stevengs, A., and Brun, J.
488 تحقیقات آب و خاک ایران، دورة 45 ، شمارة 4، زمستان 1393
(2009). Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). European Journal of Soil Science, 60, 770–784.
Cornelis, W. M., Khlosi, M., Hartmann, R., Van Meirvenne, M., and De Vos, B. (2005). Comparison of unimodal analytical expressions for the soil-water retention curve. Soil Science Society of America Journal, 69,1902–1911.
Cornelis, W. M. Ronsyn, J., Van Meirvenne, M., and Hartmann, R. (2001). Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Science Society of America Journal, 65, 638–648.
Farrokhian Firouzi, A. and Homaee, M. (2005) .Predicting water retention curve of Gypsiferous soils using the derived point pedotransfer functions. Journal of Agricultural Engineering Research, 6(24), 129-142. (In Farsi)
Farrokhian Firouzi, A. and Homaee, M. (2003). Predicting hydraulic properties of Gypsiferous soils using the derived parametric pedotransfer functions. Journal of Agricultural Engineering Research, 4(15), 57-72. (In Farsi)
Gee, G. W. and Bauder, J. W. (1986). Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part I. Second edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA, 383–411.
Ghorbani Dashtaki, S. and Homaee, M. (2002). Parametric estimation of unsaturated hydraulic functions using pedotransferfunctions. Journal of Agricultural Engineering Research, 3(12), 1-16. (In Farsi)
Ghorbani Dashtaki, S. and Homaee, M. (2004). Estimating soil water retention using point pedotransfer functions. Journal of Agricultural Science, 4(10), 157-166. (In Farsi)
Ghorbani Dashtaki, S. and Homaee, M. (2007). Parameter estimation of some infiltration models using pedotransfer functions. Iranian Journal of IrrigationandDrainage, 1(1), 21-30. (In Farsi)
Gomez, C., Lagacherie, P., and Coulouma, G. (2008). Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 148,141–148.
Gupta, S. C. and Larson, W. E. (1979). Estimating soil water characteristic from particle size distribution, organic matter percent and bulk density. Water Resources Research, 15, 1633-1635.
Ho, R. (2006). Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS. Chapman and Hall, CRC.
Homaee, M. and Farrokhian Firouzi, A. (2008). Deriving point and parametric pedotransfer functions of some gypsiferous soils. Australian Journal of Soil Research, 46, 219–227.
Sanam Jafari Gilandeh, S., Ali Rasoulzadeh, A., and Khodaverdiloo, H. (2013). Evaluating some pedotransfer functions for simulation of transient waterflow in soil. Journal of Water and Soil Conservation Research, 2(4), 1-13. (In Farsi)
Jana, R. B., Mohanty, B., and Springer, E. P. (2007). Multiscale pedotransfer functions for soil water retention. Vadose Zone Journal, 6, 868–878.
Janik, L. J., Forrester, S. T., and Rawson, A. (2009). The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems, 97, 179–188.
Janik, L. J., Merry, R. H., Forrester, S. T., Lanyon, D. M., and Rawson, A. (2007). Rapid prediction of soil water retention using mid infrared spectroscopy. Soil Science Society of America Journal, 71, 507–514.
Jarvis, N. J., Zavatiaro, L., Rajkai, K., Reynolds, W. D., Olsen, P. A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B., and Jacques, D. (2002). Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108, 1–17.
Khodaverdiloo, H., Homaee, M., van Genuchten, M. T., and Ghorbani Dashtaki, S. (2011). Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399, 93–99.
Khodaverdiloo, H. and Homaee, M. (2002). Deriving pedotransfer functions to estimate soil water characteristics curve. Journal of Agricultural Engineering Research, 10, 36-46. (In Farsi)
Lagacherie, P., Baret, F., Feret, J. B., Madeira Netto, J., and Robbez-Masson, J. M. (2008). Estimation of soil clay and calcium carbonate using laboratory, field, and airborne hyperspectral measurements. Remote Sensing and Environment, 112 (3), 825–835.
Lopez, L. R., Behrens, T., Schmidt, K., Stevens, A., Alexandre, J., Dematte, M., and Scholten, T. (2013). The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma, 195, 268-279.
Minasny, B., Mc Bratney, A. B., Tranter, G., and Murphy, B. W. (2008). Using soil knowledge for the evaluation of mid-infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European Journal of Soil Science, 59, 960–97.
Motalebi, A., Homaee, M., Zarei, Gh., and Mahmoudi, Sh. (2010). Envestigating calcium carbonate on soil water characteristics of Garmsar soils using pedotransfer functions. Journal of Irrigation and Drainage, 4(3), 426-439. (In Farsi)
Motalebi, A., Homaee, M., and Pazirz, A. (2007). Estimating hydraulic parameters of clayey soils
باباییان و همکاران: عملکرد توابع انتقالی طیفی پارامتریک و ... 489
using point pedotransfer functions. Journal of Agricultural Science, 13(2), 349-365. (In Farsi)
Mutuo, P. K., Shepherd, K. D., Albrecht, A., and Cadisch, G. (2006). Predic- tion of carbon mineralization rates from different soil physical fractions using diffuse reflectance spectroscopy. Soil Biology and Biochemistry, 38, 1658–1664.
Navabeian, M., Liaghat, M., and Homaee, M. (2004). Estimating saturated hydraulic conductivity using pedotransfer functions. Journal of Agricultural Engineering Research, 12, 1-16. (In Farsi)
Nemes, A., Schaap, M. G., and Wösten, J. H. M. (2003). Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society of America Journal, 67, 1093-1102.
Nocita, M., A. Stevens, C. Noon, and B. van Wesemael. (2013). Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 37–42.
Oosterveld, M. and Chang, C. (1980). Emprical relations between laboratory determinations of soil texture and moisture characteristic. Canadian Agriculture Engineering, 22, 149-151.
Pachepsky, Y. A., Rawls, W. J., and Lin, H. S. (2006). Hydropedology and pedotransfer functions. Geoderma, 131,308–316.
Pachepsky, Y. A. and Rawls, W. J. (2004). Development of pedotransfer functions in soil hydrology. Developments in Soil Science, 30, Elsevier, Amsterdam.
Pachepsky, Y. A., Timilin, D., and Varallyay, G. (1996). Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal, 60, 727-773.
Rawls, W. J. and Pachepsky, Y. A. (2002). Using fi eld topographic descriptors to estimate soil water retention. Soil Science, 167, 423–435.
Rawls, W. J. and Brakensiek, D. L. (1985). Prediction of soil water properties for hydrologic modeling. In: Jones, E., Ward, T.J. (Eds.). Watershed Manag. Eighties. Proceedings of Symposium ASCE, Denever, CO, 30 April-2 May 1985 ASCE, New York, pp. 293-299.
Rawls, W. J., Brakensiek, D. L., and Saxton, K. E. (1983). Estimation of soil water properties. Trans. ASAE . 25, 1316-1320.
Santra, P., Sahoo, R. N., Das, B. S., Samal, R. N., Pattanaik, A. K., and Gupta, V. K. (2009). Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS–NIR–SWIR) region. Geoderma, 152, 338–349.
Savvides, A., Corstanje, R., Baxter, S. J., Rawlins, B. J., and Lark, R. M. (2010). The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale dependent. Geoderma, 154, 353–358.
Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papendick, R. I. (1986). Estimating generalized soil water characteristics from texture. Soil Science Society of America Journal, 50, 1031-1036.
Schaap, M. G., Leij, F. J., and van Genuchten, M. Th. (2001). ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, Journal of Hydrology, 251,163–176.
Schaap, M. G. and Leij, F. J. (1998). Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 47, 37–42.
Schaap, M. G. and Bouten, W. (1996). Modeling water reten on curves of sandy soils using neural networks. Water Resource Researchs. 32, 3033–3040. Schaap, M. G., and F. J. Leij. 1998a. Database-related accuracy and uncertain- ty of pedotransfer func ons. Journal of Soil Science, 163,765–779.
Sharma, S. K., Mohanty, B. P., and Zhu, J. T. (2006). Including topography and vegetation atiributes for developing pedotransfer functions. Soil Science Society of America Journal, 70,1430–1440.
Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., and Wetterlind, J. (2010). Visible and Near Infrared Spectroscopy in Soil Science. In Donald L. Sparks, editor: Advances in Agronomy, Vol. 107, Burlington: Academic Press, 2010, pp. 163-215 from http://dx.doi.org/10.1016/S0065-2113(10)07005-7.
Tomasella, J., Pachepsky, Y., Crestana, S., and Rawls, W. J. (2003). Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention. Soil Science Society of America Journal, 67, 1085-1092.
Tomasella, J. and Hodneti, M. G. (1998). Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Science, 163,190–202.
Tranter, G., Minasny, B., McBratney, A. B., Viscarra Rossel, R. A., and Murphy, B. W. (2008). Comparing Spectral Soil Inference Systems and Mid-Infrared Spectroscopic Predictions of Soil Moisture Retention. Soil Science Society of America Journal, 72(5), 1394-1400.
van den Berg, M., Klant, E., van Reeuwijk, L. P., and Sombroek, G. (1997). Pedotransfer functions for the estimation of moisture retention characteristics of Ferralosols and related soils. Geoderma, 78, 161–180.
van Genuchten, M. Th. (1980). A close-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.
Vereecken, H. Weynants, M. Javaux, M. Pachepsky, Y. Schaap, M.G. and van Genuchten, M.Th. (2010). Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic
490 تحقیقات آب و خاک ایران، دورة 45 ، شمارة 4، زمستان 1393
Properties: A Review. Vadose Zone Journal, 9, 795-820
Vereecken, H., Diels, J., Vanorshoven, J., Feyen, J. and Bouma, J. (1992). Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Science Society of America Journal, 56, 1371–1378.
Vereecken, H. Maes, J. and Feyen, J. (1990). Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Science, 149, 1–12.
Vereecken, H. Maes, J. Feyen, J. and Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science, 148, 389–403.
Viscarra Rossel, R.A. and Behrens, T. (2010).Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158, 46–54.
Viscarra Rossel, R.A.V. (2008). ParLeS: Software for chemometric analysis of spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 90, 72–83.
Walkley A.J., and Black I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science, 37, 29–38.
Weynants, M. Vereecken, H. and Javaux, M. (2009). Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model. Vadoze Zone Journal, 8(1), 86-95.
Wosten, J.H.M. Pachepsky, Y.A. and Rawls, W.J. (2001). Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteris cs. Journal of Hydrology, 251,123-150.
Wosten, J.H.M., Lilly, A. Nemes A. and Le Bas C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169-185.
Zacharias, S. and G. Wessolek. (2007). Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention. Soil Science Society of America Journal, 71(1),43-50.