کاربرد محاسبات نرم در شبیه‌سازی عملکرد گندم دیم با استفاده از تلفیق داده‌های اقلیمی و شاخص‌های سنجش ‌از دور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه ، ارومیه، ایران

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

4 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران،

چکیده

گندم به عنوان یک محصول استراتژیک نقش اساسی در امنیت غذایی کشور دارد. این تحقیق با هدف مقایسه الگوریتم‌های مختلف برای افزایش دقت  مدل­سازی عملکرد گندم دیم با استفاده از شبکه عصبی مصنوعی در مقیاس مزرعه­ای انجام شد. برای این منظور، ترکیب دو مجموعه داده شامل شاخص‌های سنجش ‌از دور و داده‌های اقلیمی برای 61 مزرعه، به ‌عنوان ورودی مدل‌ها، مورد استفاده قرار گرفت. مزارع شهرستان‌های اشنویه، نقده و پیرانشهر که در جنوب استان آذربایجان غربی واقع‌شده‌اند، به ‌عنوان محدوده‌ی مطالعاتی در نظر گرفته شدند. از شبکه عصبی مصنوعی (ANN) به عنوان مدل پایه و از دو الگوریتم فرا ابتکاری جستجوی خزندگان (RSA) و کرم شب­تاب (FFA) برای بهبود افزایش دقت آموزش شبکه عصبی مصنوعی استفاده شد. داده­های ورودی شامل شاخص­های تفاضلی نرمال شده گیاهی (NDVI) و شاخص گیاهی درصدی مادون قرمز (IPVI) همراه با پنج پارامتر اقلیمی شامل بارش، میانگین حداکثر دما، میانگین حداقل دما، میانگین متوسط دما و میانگین رطوبت نسبی می‌باشند. نتایج نشان داد که عملکرد مدل‌های هیبریدی توسعه داده­ شده در شبیه­سازی عملکرد گندم دیم نسبت به مدل مجزای ANN بهتر بود. عملکرد ANN-FFA با ضریب تبیین 758/0 و میانگین جذر مربعات خطا 189/0 تن بر هکتار در مرحله آزمون عملکرد مناسب­تری نسبت به مدل ANN-RSA با مقادیر به ترتیب ۷۴۸/۰ و ۱۹۰/۰ تن بر هکتار دارد. هر دو الگوریتم، شاخص خطای شبیه­سازی عملکرد گندم دیم را به میزان متوسط ۰۴۲/۰ تن بر هکتار کاهش دادند. در نتیجه مدل هیبریدی ANN-FFA موجب بهبود دقت شبیه‌سازی عملکرد گندم دیمی گردید که برای به جامعیت شناخت آن نیازمند استفاده و ارزیابی آن در سایر محدوده‌های مشابه است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of soft computing in simulating rainfed wheat yield using integration of climatic data and remote sensing indices

نویسندگان [English]

  • Amin Amirashayeri 1
  • Vahid Rezaverdinejad 2
  • Javad Behmanesh 2
  • Farrokh Asadzadeh 3
  • Mina Rahimi 4
1 Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Department of Soil Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
4 Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Wheat, as a strategic crop, plays a critical role in the nation's food security. This research aimed to compare different algorithms to increase the accuracy of modeling rainfed wheat yield using artificial neural networks at the field scale. For this purpose, a combination of two datasets, including remote sensing indicators and climatic data for 61 farms, was used as input to the models. The southern regions of the Lake Urmia Basin were selected as the case study area. An artificial neural network (ANN) model, serving as the base model, and metaheuristic algorithms, including the Reptile Search Algorithm (RSA) and the Firefly Algorithm (FFA), were employed to enhance ANN training accuracy. The input data included the Normalized Difference Vegetation Index (NDVI), the Infrared Percentage Vegetation Index (IPVI), and five climatic parameters: total precipitation, mean maximum temperature, mean minimum temperature, average temperature, and mean relative humidity. The results revealed that the developed hybrid models outperformed the standalone ANN model in simulating rainfed wheat yield. Specifically, the ANN-FFA model achieved a coefficient of determination (R²) of 0.758 and a root mean square error (RMSE) of 0.189 ton.ha-1 during the test stage, outperforming the ANN-RSA model, which yielded an R² of 0.748 and an RMSE of 0.190 ton.ha-1. Both algorithms reduced the rainfed wheat yield simulation error index by an average of 0.042 ton.ha-1. As a result, the ANN-FFA hybrid model improved the accuracy of simulating rainfed wheat yield, which necessitates its use and evaluation in other similar areas for a comprehensive understanding.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Firefly Algorithm
  • Food Security
  • Rainfed products
  • Reptile Search Algorithm

Introduction

 In the recent years, artificial intelligence (AI) techniques have been increasingly employed in agricultural research due to their ability to address complex and nonlinear problems. Among the most well-known and widely used models is the Artificial Neural Network (ANN), which effectively manages intricate nonlinear relationships and interactions between variables. However, in certain cases, ANN model has demonstrated suboptimal performance in predictive tasks, raising concerns regarding their reliability (Kayhomayoon et al., 2022). To address these limitations, metaheuristic algorithms have been extensively utilized recently years to optimize and enhance the accuracy of standalone models such as ANN, Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Regression (SVR) (Milan et al., 2021). The Reptile Search Algorithm (RSA) and the Firefly Algorithm (FFA) are examples of such metaheuristic methods that have proven their effectiveness in optimization tasks. In parallel with robust prediction models, remote sensing technologies have emerged as cost-effective and accurate alternatives to traditional methods for agricultural yield estimation and modeling, especially for rainfed wheat. In recent years, researchers have increasingly integrated remote sensing indices with meteorological parameters to improve yield prediction accuracy for rainfed crops.

Materials and Methods

This study aimed to simulate and predict rainfed wheat yield across 61 farms in the counties of Oshnavieh, Piranshahr, and Naqadeh, situated in the southern part of West Azerbaijan Province, Iran, near Lake Urmia. The data covered 2005–2006 to 2024–2025, corresponding to the rainfed wheat growing season from early October to late July, obtained from the West Azerbaijan Agricultural Jihad Organization. The two main datasets were: regional meteorological data and remote sensing vegetation indices. Among the vegetation indices, the Normalized Difference Vegetation Index (NDVI) and the Infrared Percentage Vegetation Index (IPVI) were specifically selected to evaluate vegetation cover in the studied area. These datasets served as input variables for the modeling framework. Vegetation indices were extracted using satellite imagery processed in the Google Earth Engine (GEE) platform. For the period from 2006 to 2012, Landsat 5 imagery was used, while Landsat 8 imagery was employed for the period from 2013 to 2024. Initially, the datasets were integrated and modeled with an Artificial Neural Network (ANN). To improve accuracy, two metaheuristic optimization algorithms -the Reptile Search Algorithm (RSA) and the Firefly Algorithm (FFA)- were applied to optimize the models. Ultimately, two hybrid models, ANN-RSA and ANN-FFA were developed for predicting rainfed wheat yield. 

Results and Discussion

Based on the study findings, the input variables for the model included total precipitation, mean minimum temperature, and average temperature, along with the remote sensing indices NDVI and IPVI, were selected as the model inputs. The incorporation of the Reptile Search Algorithm (RSA) and the Firefly Algorithm (FFA) significantly enhanced the training accuracy of the Artificial Neural Network (ANN). During training, combining ANN with RSA and FFA increased the coefficient of determination (R²) by 13.88% and 17.31%, respectively. In the testing phase, further gains were observed, with R² increasing by 17.24% and 18.80%, respectively. Notably, the Firefly Algorithm, despite its relatively simpler structure compared to RSA, yielded superior predictive performance, achieving a root mean square error (RMSE) of 0.189 ton.ha⁻¹ and an R² value of 0.758. Overall, the ANN-FFA model outperformed other configurations, demonstrating that combining meteorological data with remote sensing indices enhances yield prediction accuracy. This highlights the potential of hybrid machine learning models to support data-driven decisions in precision agriculture, especially under rainfed conditions.

Conclusions

Timely and accurate crop yield prediction is essential for policymakers to effectively mitigate climate-related impacts and maximize agricultural products. One of the key outcomes of this study was the development of a robust predictive model that integrates meteorological parameters and remote sensing indices within an intelligent hybrid machine learning framework for forecasting rainfed wheat yield. The proposed model demonstrated promising predictive capabilities, highlighting the potential of combining artificial intelligence with environmental data for agricultural forecasting. A major advantage of such hybrid models is their independence from the need for detailed physical information about the study area often costly, time-consuming, or practically infeasible to acquire in many regions. As a result, this approach offers a cost-effective and scalable solution for yield estimation, particularly in resource-limited settings. Utilizing readily available meteorological and satellite data reduces the need for extensive field surveys and enhances the feasibility of regional yield predictions, especially in resource-limited areas.

Author contributions

In the present research, A.A.: Writing original draft, Formal analysis, Conceptualization, Data curation, Methodology, Validation, Software, Modeling. V. R.: Writing – review & editing. J.B.: Writing – review & editing. F.A.: Writing – review & editing. M.R: Writing – review & editing.

Data Availability Statement

Data is available on reasonable request from the authors.

Acknowledgements

The authors would like to thank Urmia University and West Azerbayjan province Jahad Keshavarzi for their kindley supports. Also, the authors would like to thank all participants of the present study.

Ethical considerations

The study was approved by the Ethics Committee of the Urmia University. The authors avoided data fabrication, falsification, plagiarism, and misconduct. The present manuscript has not simultaneously been sent to another journal.

Conflict of interest

The author declares no conflict of interest.

Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158.
Ahmadi, N., & Fard Moradinia, S. (2024). An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study. Hydrology Research, 55(5), 560-575.
Ahmed, N., Mahmood, S. A., Haseeb, M., Tahir, Z., & Batool, S. (2025). Enhancing food security: machine learning-based wheat yield prediction using remote sensing and climate data in Pakistan. Theoretical and Applied Climatology, 156(5), 1-19.
Al-Shourbaji, I., Kachare, P. H., Alshathri, S., Duraibi, S., Elnaim, B., & Abd Elaziz, M. (2022). An efficient parallel reptile search algorithm and snake optimizer approach for feature selection. Mathematics, 10(13), 2351.
Amirashayeri, A., Behmanesh, J., Rezaverdinejad, V., & Fathollahzadeh Attar, N. (2020). Prediction of daily          reference evapotranspiration using hybrid artificial intelligence method based on empirical mode decomposition. Iranian Journal of Irrigation & Drainage14(4), 1376-1390. (In Persian)
Amirashayeri, A., Behmanesh, J., Rezaverdinejad, V., & Fathollahzadeh Attar, N. (2023). Evapotranspiration estimation using hybrid and intelligent methods. Soft Computing, 27(14), 9801-9821.
Amirashayeri, A., Rezaverdinejad, V., Behmanesh, J., Asadzadeh, F., & Rahimi, M. (2025). Modeling and forecasting rainfed wheat yield based on meteorological variables using combined Artificial intelligence methods. Iranian Journal of Irrigation & Drainage19(2), 243-261. (In Persian)
Arshad, S., Kazmi, J. H., Javed, M. G., & Mohammed, S. (2023). Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia. European Journal of Agronomy, 147, 126837.
Azar, N. A., Kardan, N., & Milan, S. G. (2023). Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Engineering with Computers, 39(2), 1375-1393.
Bahmani, M. J., Kayhomayoon, Z., Milan, S. G., Hassani, F., Malekpoor, M., & Berndtsson, R. (2025). Development of a new hybrid model to enhance streamflow estimation using artificial neural network and reptile search algorithm. Scientific Reports, 15(1), 6098.
Elgamal, Z., Sabri, A. Q. M., Tubishat, M., Tbaishat, D., Makhadmeh, S. N., & Alomari, O. A. (2022). Improved reptile search optimization algorithm using chaotic map and simulated annealing for feature selection in medical field. IEEE Access, 10, 51428-51446.
Feng, L., Wang, Y., Zhang, Z., & Du, Q. (2021). Geographically and temporally weighted neural network for winter wheat yield prediction. Remote Sensing of Environment, 262, 112514.
Jafari, M. M., Liaghat, A., & Mohtashami, S. (2023). Comparison and Evaluation of LM, BR and GD Algorithms of Artificial Neural Network in Estimating Rainfed Wheat Yield Based on Meteorological Parameters (Case Study: Kermanshah Province). Iranian Journal of Irrigation & Drainage, 17(3), 529-544. (In Persian)
Katipoğlu, O. M., Ertugay, N., Elshaboury, N., Aktürk, G., Kartal, V., & Pande, C. B. (2024). A novel metaheuristic optimization and soft computing techniques for improved hydrological drought forecasting. Physics and Chemistry of the Earth, Parts A/B/C, 135, 103646.
Kayhomayoon, Z., Bahmani, M. J., Ghordoyee Milan, S., Bazrafshan, O., & Berndtsson, R. (2025). Integration of the reptile search algorithm and the adaptive neuro-fuzzy inference system enhances standardized precipitation evapotranspiration index forecasting. Scientific Reports, 15(1), 14647.
Kayhomayoon, Z., Ghordoyee-Milan, S., Jaafari, A., Arya-Azar, N., Melesse, A. M., & Moghaddam, H. K. (2022). How does a combination of numerical modeling, clustering, artificial intelligence, and evolutionary algorithms perform to predict regional groundwater levels? Computers and Electronics in Agriculture, 203, 107482.
Lee, C. M., & Ko, C. N. (2009). Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing, 73(1-3), 449-460.
Li, L., Wang, B., Feng, P., Li Liu, D., He, Q., Zhang, Y., Wang, Y., Li, S., Lu, X., Yue, C., & Li, Y. (2022). Developing machine learning models with multi-source environmental data to predict wheat yield in China. Computers and Electronics in Agriculture, 194, 106790.
Lv, C., Xing, Y., Zhang, J., Na, X., Li, Y., Liu, T., Cao, D., & Wang, F.Y. (2017). Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system. IEEE Transactions on Industrial Informatics, 14(8), 3436-3446.
Malik, A., Kumar, A., Salih, S. Q., Kim, S., Kim, N. W., Yaseen, Z. M., & Singh, V. P. (2020). Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India. Plos one, 15(5), e0233280.
Meraj, G., Kanga, S., Ambadkar, A., Kumar, P., Singh, S.K., Farooq, M., Johnson, B.A., Rai, A. & Sahu, N. (2022). Assessing the yield of wheat using satellite remote sensing-based machine learning algorithms and simulation modeling. Remote Sensing, 14(13), 3005.
Milan, S. G., Roozbahani, A., Azar, N. A., & Javadi, S. (2021). Development of adaptive neuro fuzzy inference system–Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. Journal of hydrology, 598, 126258.
Mirmousavi, H., Babaei, G., & Karimi, S. (2010). Estimate the Amount of Vegetation Cover Using Different Indicators in Satellite Images and Comparing Them with the Index NDVI in the Region of Geshlag – Sanandaj. Geographic Thought4(7), 66-88. (In Persian)
Moghaddam, H. K., Milan, S. G., Kayhomayoon, Z., & Azar, N. A. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environ Monit Assess193(4), 1-20.
Nelsen, T. S., Hegarty, J., Tamagno, S., & Lundy, M. E. (2025). NDVI-based ideotypes as a cost-effective tool to support wheat yield stability selection under heterogeneous environments. Field Crops Research, 322, 109727.
Osaba, E., Yang, X. S., Diaz, F., Onieva, E., Masegosa, A. D., & Perallos, A. (2017). A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Computing, 21(18), 5295-5308.
Qader, S. H., Dash, J., & Atkinson, P. M. (2018). Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Science of the total Environment, 613, 250-262.
Raza, A., Shahid, M.A., Zaman, M., Miao, Y., Huang, Y., Safdar, M., Maqbool, S., & Muhammad, N.E. (2025). Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions. Remote Sensing, 17(5), 774.
Rezapour, S., Jooyandeh, E., Ramezanzade, M., Mostafaeipour, A., Jahangiri, M., Issakhov, A., Chowdhury, S. & Techato, K. (2021). Forecasting rainfed agricultural production in arid and semi-arid lands using learning machine methods: A case study. Sustainability, 13(9), 4607.
Rezaverdinejad, V., Rahimi, M., & Asadzadeh, F. (2018). Evaluation of Springs Water Quality of West Azerbaijan Province in Terms of Emitters Clogging Potential in Drip Irrigation Systems. Water and Soil Science, 28(4), 141-153. (In Persian)
Roselaar, S. (2020). Agriculture in republican Italy. A Companion to Ancient Agriculture, 417-430.
Sáenz, C., Bermejo-Saiz, A., Cicuéndez, V., Pugni, T., Madruga, D., Palacios-Orueta, A., & Litago, J. (2024). Estimation and Prediction of Cereal Production Using Normalized Difference Vegetation Index Time Series (Sentinel-2) Data in Central Spain. Engineering Proceedings, 68(1), 26.
Sharafi, M., Amirashayeri, A., Behmanesh, J., Rezaverdinejad, V., & Heidari, H. (2025). Predicting Daily Soil Temperature at 50 Cm Depth Using Advanced Hybrid and Combined Models in Semi-Arid Regions. Communications in Soil Science and Plant Analysis, 1-18.
Sharafi, M., Behmanesh, J., Rezaverdinejad, V., & Samadianfard, S. (2024). Evaluation and comparison of AquaCrop model and intelligent models to predict wheat yield (Case study: Miandoab and Mahabad cities). Journal of Soil and Plant Science, 34(1), 1-18. (In Persian)
Sinwar, D., Dhaka, V. S., Sharma, M. K., & Rani, G. (2020). AI-based yield prediction and smart irrigation. Internet of Things and Analytics for Agriculture, Volume 2, 155-180.
Xin-She, Y., & Slowik, A. (2008). Firefly algorithm. Nature-inspired metaheuristic algorithms, 20, 79-90.
Yang XS, 2009. Firefly algorithms for multimodal optimization. International Symposium on Stochastic Algorithms 17(1), 169-178.
Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International journal of swarm intelligence, 1(1), 36-50.
Zhao, Y., Xiao, D., Bai, H., Tang, J., Liu, D. L., Qi, Y., & Shen, Y. (2022). The prediction of wheat yield in the North China Plain by coupling crop model with machine learning algorithms. Agriculture, 13(1), 99.